Akella Varun, Bagherinasab Razeyeh, Lee Hyunwoo, Li Jia Ming, Nguyen Long, Salehin Mushfiqus, Chow Vincent Tze Yang, Popuri Karteek, Beg Mirza Faisal
School of Engineering Science, Simon Fraser University, Vancouver, Canada.
Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Vancouver, Canada.
J Imaging Inform Med. 2025 May 27. doi: 10.1007/s10278-025-01544-0.
Body composition analysis is vital in assessing health conditions such as obesity, sarcopenia, and metabolic syndromes. MRI provides detailed images of skeletal muscle (SM), visceral adipose tissue (VAT), and subcutaneous adipose tissue (SAT), but their manual segmentation is labor-intensive and limits clinical applicability. This study validates an automated tool for MRI-based 2D body composition analysis (Data Analysis Facilitation Suite (DAFS) Express), comparing its automated measurements with expert manual segmentations using UK Biobank data. A cohort of 399 participants from the UK Biobank dataset was selected, yielding 423 single L3 slices for analysis. DAFS Express performed automated segmentations of SM, VAT, and SAT, which were then manually corrected by expert raters for validation. Evaluation metrics included Jaccard coefficients, Dice scores, intraclass correlation coefficients (ICCs), and Bland-Altman Plots to assess segmentation agreement and reliability. High agreements were observed between automated and manual segmentations with mean Jaccard scores: SM 99.03%, VAT 95.25%, and SAT 99.57%, and mean Dice scores: SM 99.51%, VAT 97.41%, and SAT 99.78%. Cross-sectional area comparisons showed consistent measurements, with automated methods closely matching manual measurements for SM and SAT, and slightly higher values for VAT (SM: auto 132.51 cm, manual 132.36 cm; VAT: auto 137.07 cm, manual 134.46 cm; SAT: auto 203.39 cm, manual 202.85 cm). ICCs confirmed strong reliability (SM 0.998, VAT 0.994, SAT 0.994). Bland-Altman plots revealed minimal biases, and boxplots illustrated distribution similarities across SM, VAT, and SAT areas. On average, DAFS Express took 18 s per DICOM for a total of 126.9 min for 423 images to output segmentations and measurement PDF's per DICOM. Automated segmentation of SM, VAT, and SAT from 2D MRI images using DAFS Express showed comparable accuracy to manual segmentation. This underscores its potential to streamline image analysis processes in research and clinical settings, enhancing diagnostic accuracy and efficiency. Future work should focus on further validation across diverse clinical applications and imaging conditions.
身体成分分析对于评估肥胖、肌肉减少症和代谢综合征等健康状况至关重要。磁共振成像(MRI)可提供骨骼肌(SM)、内脏脂肪组织(VAT)和皮下脂肪组织(SAT)的详细图像,但其手动分割工作强度大,限制了临床应用。本研究验证了一种基于MRI的二维身体成分分析自动化工具(数据分析促进套件(DAFS)Express),使用英国生物银行数据将其自动测量结果与专家手动分割结果进行比较。从英国生物银行数据集中选取了399名参与者组成队列,得到423个用于分析的L3单一层面图像。DAFS Express对SM、VAT和SAT进行自动分割,然后由专家评分员进行手动校正以进行验证。评估指标包括杰卡德系数、骰子分数、组内相关系数(ICC)和布兰德-奥特曼图,以评估分割的一致性和可靠性。自动分割与手动分割之间观察到高度一致性,平均杰卡德分数分别为:SM 99.03%、VAT 95.25%、SAT 99.57%;平均骰子分数分别为:SM 99.51%、VAT 97.41%、SAT 99.78%。横断面面积比较显示测量结果一致,自动方法在SM和SAT方面与手动测量结果紧密匹配,VAT的值略高(SM:自动测量值132.51平方厘米,手动测量值132.36平方厘米;VAT:自动测量值137.07平方厘米,手动测量值134.46平方厘米;SAT:自动测量值203.39平方厘米,手动测量值202.85平方厘米)。ICC证实了很强的可靠性(SM 0.998、VAT 0.994、SAT 0.994)。布兰德-奥特曼图显示偏差极小,箱线图说明了SM、VAT和SAT区域的分布相似性。平均而言,DAFS Express每幅DICOM图像需要18秒,423幅图像总共需要126.9分钟来输出分割结果和每幅DICOM的测量PDF文件。使用DAFS Express从二维MRI图像中自动分割SM、VAT和SAT显示出与手动分割相当的准确性。这突出了其在研究和临床环境中简化图像分析流程、提高诊断准确性和效率的潜力。未来的工作应侧重于在不同临床应用和成像条件下进行进一步验证。