Suppr超能文献

用于新冠病毒接触者追踪与预测的未来物联网工具:科学现状综述

Future IoT tools for COVID-19 contact tracing and prediction: A review of the state-of-the-science.

作者信息

Jahmunah Vicnesh, Sudarshan Vidya K, Oh Shu Lih, Gururajan Raj, Gururajan Rashmi, Zhou Xujuan, Tao Xiaohui, Faust Oliver, Ciaccio Edward J, Ng Kwan Hoong, Acharya U Rajendra

机构信息

School of Engineering Ngee Ann Polytechnic Singapore Singapore.

Biomedical Engineering School of Social Science and Technology, Singapore University of Social Sciences Singapore Singapore.

出版信息

Int J Imaging Syst Technol. 2021 Jun;31(2):455-471. doi: 10.1002/ima.22552. Epub 2021 Feb 9.

Abstract

In 2020 the world is facing unprecedented challenges due to COVID-19. To address these challenges, many digital tools are being explored and developed to contain the spread of the disease. With the lack of availability of vaccines, there is an urgent need to avert resurgence of infections by putting some measures, such as contact tracing, in place. While digital tools, such as phone applications are advantageous, they also pose challenges and have limitations (eg, wireless coverage could be an issue in some cases). On the other hand, wearable devices, when coupled with the Internet of Things (IoT), are expected to influence lifestyle and healthcare directly, and they may be useful for health monitoring during the global pandemic and beyond. In this work, we conduct a literature review of contact tracing methods and applications. Based on the literature review, we found limitations in gathering health data, such as insufficient network coverage. To address these shortcomings, we propose a novel intelligent tool that will be useful for contact tracing and prediction of COVID-19 clusters. The solution comprises a phone application combined with a wearable device, infused with unique intelligent IoT features (complex data analysis and intelligent data visualization) embedded within the system to aid in COVID-19 analysis. Contact tracing applications must establish data collection and data interpretation. Intelligent data interpretation can assist epidemiological scientists in anticipating clusters, and can enable them to take necessary action in improving public health management. Our proposed tool could also be used to curb disease incidence in future global health crises.

摘要

2020年,世界因新冠疫情面临前所未有的挑战。为应对这些挑战,人们正在探索和开发许多数字工具以遏制疾病传播。由于缺乏疫苗,迫切需要通过采取一些措施(如接触者追踪)来避免感染卷土重来。虽然诸如手机应用程序之类的数字工具具有优势,但它们也带来挑战并存在局限性(例如,在某些情况下无线覆盖可能是个问题)。另一方面,可穿戴设备与物联网(IoT)结合后,有望直接影响生活方式和医疗保健,并且在全球大流行期间及之后可能对健康监测有用。在这项工作中,我们对接触者追踪方法和应用进行了文献综述。基于文献综述,我们发现收集健康数据存在局限性,例如网络覆盖不足。为解决这些缺点,我们提出了一种新颖的智能工具,它将有助于新冠疫情聚集性病例的接触者追踪和预测。该解决方案包括一个手机应用程序和一个可穿戴设备,系统内融入了独特的智能物联网功能(复杂数据分析和智能数据可视化)以辅助新冠疫情分析。接触者追踪应用程序必须建立数据收集和数据解读机制。智能数据解读可以帮助流行病学家预测聚集性病例,并使他们能够采取必要行动改善公共卫生管理。我们提出的工具还可用于在未来全球卫生危机中遏制疾病发病率。

相似文献

1
Future IoT tools for COVID-19 contact tracing and prediction: A review of the state-of-the-science.
Int J Imaging Syst Technol. 2021 Jun;31(2):455-471. doi: 10.1002/ima.22552. Epub 2021 Feb 9.
4
COVICT: an IoT based architecture for COVID-19 detection and contact tracing.
J Ambient Intell Humaniz Comput. 2023;14(6):7381-7398. doi: 10.1007/s12652-022-04446-z. Epub 2022 Oct 20.
5
IoT Platform for COVID-19 Prevention and Control: A Survey.
IEEE Access. 2021 Mar 23;9:49929-49941. doi: 10.1109/ACCESS.2021.3068276. eCollection 2021.
6
Internet of Things (IoT) Adoption Model for Early Identification and Monitoring of COVID-19 Cases: A Systematic Review.
Int J Prev Med. 2022 Aug 8;13:112. doi: 10.4103/ijpvm.IJPVM_667_20. eCollection 2022.
7
A Web-Based Digital Contact Tracing Strategy Addresses Stigma Concerns Among Individuals Evaluated for COVID-19.
Telemed J E Health. 2022 Mar;28(3):317-324. doi: 10.1089/tmj.2021.0148. Epub 2021 Jun 3.
8
Application of cognitive Internet of Medical Things for COVID-19 pandemic.
Diabetes Metab Syndr. 2020 Sep-Oct;14(5):911-915. doi: 10.1016/j.dsx.2020.06.014. Epub 2020 Jun 11.
9
Study on IoT for SARS-CoV-2 with healthcare: present and future perspective.
Math Biosci Eng. 2021 Nov 4;18(6):9697-9726. doi: 10.3934/mbe.2021475.
10
The experience of contact tracing in Singapore in the control of COVID-19: highlighting the use of digital technology.
Int Orthop. 2021 Jan;45(1):65-69. doi: 10.1007/s00264-020-04646-2. Epub 2020 Nov 14.

引用本文的文献

2
Energy Level Tuning in Conjugated Donor Polymers by Chalcogen Exchange for Low Dark Current Organic Photodetectors.
ACS Mater Lett. 2024 Oct 8;6(11):5006-5015. doi: 10.1021/acsmaterialslett.4c01899. eCollection 2024 Nov 4.
3
IoT-based COVID-19 detection using recalling-enhanced recurrent neural network optimized with golden eagle optimization algorithm.
Med Biol Eng Comput. 2024 Mar;62(3):925-940. doi: 10.1007/s11517-023-02973-1. Epub 2023 Dec 14.
6
Enhanced sub-1 eV detection in organic photodetectors through tuning polymer energetics and microstructure.
Sci Adv. 2023 Jun 9;9(23):eadh2694. doi: 10.1126/sciadv.adh2694. Epub 2023 Jun 7.
7
Computer-aided methods for combating Covid-19 in prevention, detection, and service provision approaches.
Neural Comput Appl. 2023;35(20):14739-14778. doi: 10.1007/s00521-023-08612-y. Epub 2023 May 5.
8
9
The German COVID-19 Digital Contact Tracing App: A Socioeconomic Evaluation.
Int J Environ Res Public Health. 2022 Nov 2;19(21):14318. doi: 10.3390/ijerph192114318.
10
Internet of things (IoT) imbedded point-of-care SARS-CoV-2 testing in the pandemic and post-pandemic era.
Biosaf Health. 2022 Dec;4(6):365-368. doi: 10.1016/j.bsheal.2022.09.005. Epub 2022 Sep 23.

本文引用的文献

1
An Introductory Review of Deep Learning for Prediction Models With Big Data.
Front Artif Intell. 2020 Feb 28;3:4. doi: 10.3389/frai.2020.00004. eCollection 2020.
2
COVIDiag: a clinical CAD system to diagnose COVID-19 pneumonia based on CT findings.
Eur Radiol. 2021 Jan;31(1):121-130. doi: 10.1007/s00330-020-07087-y. Epub 2020 Aug 1.
4
Automated detection of COVID-19 cases using deep neural networks with X-ray images.
Comput Biol Med. 2020 Jun;121:103792. doi: 10.1016/j.compbiomed.2020.103792. Epub 2020 Apr 28.
6
Coronavirus contact-tracing apps: can they slow the spread of COVID-19?
Nature. 2020 May 19. doi: 10.1038/d41586-020-01514-2.
7
Internet of things (IoT) applications to fight against COVID-19 pandemic.
Diabetes Metab Syndr. 2020 Jul-Aug;14(4):521-524. doi: 10.1016/j.dsx.2020.04.041. Epub 2020 May 5.
8
COVID-19: The first documented coronavirus pandemic in history.
Biomed J. 2020 Aug;43(4):328-333. doi: 10.1016/j.bj.2020.04.007. Epub 2020 May 5.
9
Rapid implementation of mobile technology for real-time epidemiology of COVID-19.
Science. 2020 Jun 19;368(6497):1362-1367. doi: 10.1126/science.abc0473. Epub 2020 May 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验