Xiao Fengping, Wang Hongkang, Yao Tianhao, Zhao Xin, Yang Xuming, Yu Denis Y W, Rogach Andrey L
Department of Materials Science and Engineering, and Center for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong S.A.R., P. R. China.
State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
ACS Appl Mater Interfaces. 2021 Apr 21;13(15):18010-18020. doi: 10.1021/acsami.1c02301. Epub 2021 Apr 6.
Dissolution of intermediate sodium polysulfides (NaS; 4≤≤8) is a crucial obstacle for the development of room-temperature sodium-sulfur (Na-S) batteries. One promising strategy to avoid this issue is to load short-chain sulfur (S), which could prohibit the generation of soluble polysulfides during the sodiation process. Herein, unlike in the previous reported cases where short-chain sulfur was stored by confinement within a small-pore-size (≤0.5 nm) carbon host, we report a new strategy to generate short-chain sulfur in larger pores (>0.5 nm) by the synergistic catalytic effect of CoS and appropriate pore size. Based on density functional theory calculations, we predict that CoS can serve as a catalyst to weaken the S-S bond in the S ring structure, facilitating the formation of short-chain sulfur molecules. By experimentally tuning the pore size of the CoS-based hosts and comparing their performances as cathodes in Na-S and Li-S batteries, we conclude that such a catalytic effect depends on the proximity of sulfur to CoS. This avoids the generation of soluble polysulfides and results in superior electrochemical properties of the composite materials introduced here for Na-S batteries. As a result, the optimized CoS/N-doped carbon/S electrode showed excellent electrochemical performance with high reversible specific capacities of 488 mA h g (962 mA h g) after 100 cycles (0.1 A g) and 403 mA h g after 1000 cycles (1 A g) with a superior rate performance (262 mA h g at 5.0 A g).
中间多硫化钠(NaS;4≤≤8)的溶解是室温钠硫(Na-S)电池发展的关键障碍。一种有前景的避免该问题的策略是负载短链硫(S),这可以在钠化过程中抑制可溶性多硫化物的生成。在此,与之前报道的将短链硫通过限制在小孔径(≤0.5 nm)碳主体中储存的情况不同,我们报道了一种通过CoS的协同催化作用和合适的孔径在较大孔径(>0.5 nm)中生成短链硫的新策略。基于密度泛函理论计算,我们预测CoS可以作为催化剂削弱S环结构中的S-S键,促进短链硫分子的形成。通过实验调节基于CoS的主体的孔径,并比较它们在Na-S和Li-S电池中作为阴极的性能,我们得出这种催化作用取决于硫与CoS的接近程度。这避免了可溶性多硫化物的生成,并导致此处引入的用于Na-S电池的复合材料具有优异的电化学性能。结果,优化后的CoS/N掺杂碳/S电极表现出优异的电化学性能,在100次循环(0.1 A g)后具有488 mA h g(962 mA h g)的高可逆比容量,在1000次循环(1 A g)后具有403 mA h g的高可逆比容量,并且具有优异的倍率性能(在5.0 A g时为262 mA h g)。