Suppr超能文献

双功能金属-有机框架内多硫化物的限制用于高性能锂硫电池。

Confinement of polysulfides within bi-functional metal-organic frameworks for high performance lithium-sulfur batteries.

机构信息

School of Chemistry and Environment, South China Normal University, Guangzhou, 510006, P. R. China.

出版信息

Nanoscale. 2018 Feb 8;10(6):2774-2780. doi: 10.1039/c7nr07118c.

Abstract

A lithium-sulfur (Li-S) battery is regarded as the most promising candidate for next generation energy storage systems, because of its high theoretical specific capacity (1675 mA h g) and specific energy (2500 W h kg), as well as the abundance, low cost and environmental benignity of sulfur. However, the soluble polysulfides LiS (4 ≤ x ≤ 8) produced during the discharge process can cause the so-called "shuttle effect" and lead to low coulombic efficiency and rapid capacity fading of the batteries, which seriously restrict their practical application. Using porous materials as hosts to immobilize the polysulfides is proved to be an effective strategy. In this article, a dual functional cage-like metal-organic framework (Cu-MOF), Cu-TDPAT, combining the Lewis basic sites from the nitrogen atoms of the ligand HTDPAT with the Lewis acidic sites from Cu(ii) open metal sites (OMSs), was employed as the sulfur host in a Li-S battery for lithium ions and polysulfide anions (S). In addition, the size of nano-Cu-TDPAT was also optimized by microwave synthesis to reduce the internal resistance of the batteries. The electrochemical test results showed that the optimized Cu-TDPAT material can efficiently confine the polysulfides within the MOF, and the resultant porous S@Cu-TDPAT composite cathode material with the size of 100 nm shows good cycling performance with a reversible capacity of about 745 mA h g at 1C (1C = 1675 mA g) after 500 cycles, to the best of our knowledge, which is higher than those of all reported S@MOF cathode materials. The DFT calculation and XPS data indicate that the good cycling performance mainly results from the dual functional binding sites (that is, Lewis acid and base sites) in nanoporous Cu-TDPAT, providing the comprehensive and robust interaction with the polysulfides to overcome their dissolution and diffusion into the electrolyte. Clearly, our work provides a good example of designing MOFs with suitable interaction sites for the polysulfides to achieve S@MOF cathode materials with excellent cycling performance by multiple synergistic effects between nanoporous host MOFs and the polysulfides.

摘要

锂硫(Li-S)电池被认为是下一代储能系统最有前途的候选者,因为其具有高理论比容量(1675 mA h g)和比能量(2500 W h kg),以及硫的丰富、低成本和环境友好性。然而,在放电过程中产生的可溶性多硫化物 LiS(4 ≤ x ≤ 8)会导致所谓的“穿梭效应”,导致电池的库仑效率低和容量快速衰减,这严重限制了它们的实际应用。使用多孔材料作为主体来固定多硫化物被证明是一种有效的策略。在本文中,一种双功能笼状金属有机骨架(Cu-MOF),Cu-TDPAT,结合了配体 HTDPAT 中氮原子的路易斯碱性位点和 Cu(ii)开金属位点(OMSs)的路易斯酸性位点,被用作 Li-S 电池中的硫主体,用于锂离子和多硫化物阴离子(S)。此外,还通过微波合成优化了纳米 Cu-TDPAT 的尺寸,以降低电池的内阻。电化学测试结果表明,优化后的 Cu-TDPAT 材料可以有效地将多硫化物限制在 MOF 内,所得多孔 S@Cu-TDPAT 复合阴极材料的尺寸为 100nm,在 500 次循环后具有约 745 mA h g 的可逆容量,在 1C(1C = 1675 mA g)下,循环性能良好,据我们所知,这高于所有报道的 S@MOF 阴极材料。DFT 计算和 XPS 数据表明,良好的循环性能主要源于纳米多孔 Cu-TDPAT 中的双功能结合位点(即路易斯酸和碱位点),为多硫化物提供了全面而强大的相互作用,克服了它们溶解和扩散到电解质中的问题。显然,我们的工作为设计具有合适相互作用位点的 MOFs 提供了一个很好的例子,通过纳米多孔主体 MOFs 与多硫化物之间的多种协同作用,实现了具有优异循环性能的 S@MOF 阴极材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验