University of Electronic Science and Technology of China.
University of Tokyo, Japan.
Brief Bioinform. 2021 Sep 2;22(5). doi: 10.1093/bib/bbab105.
Single-cell RNA sequencing (scRNA-seq) has enabled us to study biological questions at the single-cell level. Currently, many analysis tools are available to better utilize these relatively noisy data. In this review, we summarize the most widely used methods for critical downstream analysis steps (i.e. clustering, trajectory inference, cell-type annotation and integrating datasets). The advantages and limitations are comprehensively discussed, and we provide suggestions for choosing proper methods in different situations. We hope this paper will be useful for scRNA-seq data analysts and bioinformatics tool developers.
单细胞 RNA 测序 (scRNA-seq) 使我们能够在单细胞水平上研究生物学问题。目前,有许多分析工具可用于更好地利用这些相对嘈杂的数据。在这篇综述中,我们总结了最广泛使用的关键下游分析步骤(即聚类、轨迹推断、细胞类型注释和整合数据集)的方法。全面讨论了它们的优缺点,并为在不同情况下选择合适方法提供了建议。我们希望本文对 scRNA-seq 数据分析人员和生物信息学工具开发人员有用。