Suppr超能文献

一种用于多模态情感识别的新型信号到图像转换和特征级融合方法。

A novel signal to image transformation and feature level fusion for multimodal emotion recognition.

机构信息

Department of Computer Engineering, Karadeniz Technical University, Trabzon, Turkey.

出版信息

Biomed Tech (Berl). 2021 Apr 7;66(4):353-362. doi: 10.1515/bmt-2020-0229. Print 2021 Aug 26.

Abstract

Emotion is one of the most complex and difficult expression to be predicted. Nowadays, many recognition systems that use classification methods have focused on different types of emotion recognition problems. In this paper, we aimed to propose a multimodal fusion method between electroencephalography (EEG) and electrooculography (EOG) signals for emotion recognition. Therefore, before the feature extraction stage, we applied different angle-amplitude transformations to EEG-EOG signals. These transformations take arbitrary time domain signals and convert them two-dimensional images named as Angle-Amplitude Graph (AAG). Then, we extracted image-based features using a scale invariant feature transform method, fused these features originates basically from EEG-EOG and lastly classified with support vector machines. To verify the validity of these proposed methods, we performed experiments on the multimodal DEAP dataset which is a benchmark dataset widely used for emotion analysis with physiological signals. In the experiments, we applied the proposed emotion recognition procedures on the arousal-valence dimensions. We achieved (91.53%) accuracy for the arousal space and (90.31%) for the valence space after fusion. Experimental results showed that the combination of AAG image features belonging to EEG-EOG signals in the baseline angle amplitude transformation approaches enhanced the classification performance on the DEAP dataset.

摘要

情感是最复杂和难以预测的表达之一。如今,许多使用分类方法的识别系统已经专注于不同类型的情感识别问题。在本文中,我们旨在提出一种脑电(EEG)和眼电(EOG)信号之间的多模态融合方法,用于情感识别。因此,在特征提取阶段之前,我们将 EEG-EOG 信号应用于不同的角度-幅度变换。这些变换采用任意时域信号,并将其转换为二维图像,称为角度-幅度图(AAG)。然后,我们使用尺度不变特征变换方法提取基于图像的特征,融合这些特征基本上来源于 EEG-EOG,最后使用支持向量机进行分类。为了验证这些方法的有效性,我们在多模态 DEAP 数据集上进行了实验,该数据集是一个广泛用于生理信号情感分析的基准数据集。在实验中,我们在兴奋-效价维度上应用了所提出的情感识别程序。在融合后,我们在兴奋空间中达到了(91.53%)的准确率,在效价空间中达到了(90.31%)的准确率。实验结果表明,在基线角度幅度变换方法中,属于 EEG-EOG 信号的 AAG 图像特征的组合增强了在 DEAP 数据集上的分类性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验