Suppr超能文献

基于 EEG 功能连接模式的图论分析及其与生理信号的融合在情绪识别中的应用。

Graph Theoretical Analysis of EEG Functional Connectivity Patterns and Fusion with Physiological Signals for Emotion Recognition.

机构信息

Centre for Research and Technology Hellas, Information Technologies Institute, 6th Km Charilaou-Thermi, 57001 Thessaloniki, Greece.

出版信息

Sensors (Basel). 2022 Oct 26;22(21):8198. doi: 10.3390/s22218198.

Abstract

Emotion recognition is a key attribute for realizing advances in human-computer interaction, especially when using non-intrusive physiological sensors, such as electroencephalograph (EEG) and electrocardiograph. Although functional connectivity of EEG has been utilized for emotion recognition, the graph theory analysis of EEG connectivity patterns has not been adequately explored. The exploitation of brain network characteristics could provide valuable information regarding emotions, while the combination of EEG and peripheral physiological signals can reveal correlation patterns of human internal state. In this work, a graph theoretical analysis of EEG functional connectivity patterns along with fusion between EEG and peripheral physiological signals for emotion recognition has been proposed. After extracting functional connectivity from EEG signals, both global and local graph theory features are extracted. Those features are concatenated with statistical features from peripheral physiological signals and fed to different classifiers and a Convolutional Neural Network (CNN) for emotion recognition. The average accuracy on the DEAP dataset using CNN was 55.62% and 57.38% for subject-independent valence and arousal classification, respectively, and 83.94% and 83.87% for subject-dependent classification. Those scores went up to 75.44% and 78.77% for subject-independent classification and 88.27% and 90.84% for subject-dependent classification using a feature selection algorithm, exceeding the current state-of-the-art results.

摘要

情绪识别是实现人机交互进展的关键属性,特别是在使用非侵入性生理传感器(如脑电图 (EEG) 和心电图)时。尽管 EEG 的功能连接已被用于情绪识别,但 EEG 连接模式的图论分析尚未得到充分探索。对脑网络特征的利用可以提供有关情绪的有价值信息,而 EEG 和外周生理信号的结合可以揭示人类内部状态的相关模式。在这项工作中,提出了一种基于 EEG 功能连接模式的图论分析以及 EEG 和外周生理信号融合的情绪识别方法。从 EEG 信号中提取功能连接后,提取全局和局部图论特征。这些特征与外周生理信号的统计特征相结合,并输入到不同的分类器和卷积神经网络 (CNN) 中进行情绪识别。在 DEAP 数据集上,使用 CNN 对独立于主体的效价和唤醒分类的平均准确率分别为 55.62%和 57.38%,对依赖于主体的分类的平均准确率分别为 83.94%和 83.87%。使用特征选择算法后,独立于主体的分类准确率提高到 75.44%和 78.77%,依赖于主体的分类准确率提高到 88.27%和 90.84%,超过了当前的最先进水平。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb9f/9656224/f9903de10656/sensors-22-08198-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验