Suppr超能文献

基于多分支融合卷积神经网络的脑电信号单上肢运动想象任务识别

Recognition of single upper limb motor imagery tasks from EEG using multi-branch fusion convolutional neural network.

作者信息

Zhang Rui, Chen Yadi, Xu Zongxin, Zhang Lipeng, Hu Yuxia, Chen Mingming

机构信息

Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, China.

出版信息

Front Neurosci. 2023 Feb 22;17:1129049. doi: 10.3389/fnins.2023.1129049. eCollection 2023.

Abstract

Motor imagery-based brain-computer interfaces (MI-BCI) have important application values in the field of neurorehabilitation and robot control. At present, MI-BCI mostly use bilateral upper limb motor tasks, but there are relatively few studies on single upper limb MI tasks. In this work, we conducted studies on the recognition of motor imagery EEG signals of the right upper limb and proposed a multi-branch fusion convolutional neural network (MF-CNN) for learning the features of the raw EEG signals as well as the two-dimensional time-frequency maps at the same time. The dataset used in this study contained three types of motor imagery tasks: extending the arm, rotating the wrist, and grasping the object, 25 subjects were included. In the binary classification experiment between the grasping object and the arm-extending tasks, MF-CNN achieved an average classification accuracy of 78.52% and kappa value of 0.57. When all three tasks were used for classification, the accuracy and kappa value were 57.06% and 0.36, respectively. The comparison results showed that the classification performance of MF-CNN is higher than that of single CNN branch algorithms in both binary-class and three-class classification. In conclusion, MF-CNN makes full use of the time-domain and frequency-domain features of EEG, can improve the decoding accuracy of single limb motor imagery tasks, and it contributes to the application of MI-BCI in motor function rehabilitation training after stroke.

摘要

基于运动想象的脑机接口(MI-BCI)在神经康复和机器人控制领域具有重要的应用价值。目前,MI-BCI大多采用双侧上肢运动任务,但针对单上肢MI任务的研究相对较少。在这项工作中,我们对右上肢运动想象脑电信号的识别进行了研究,并提出了一种多分支融合卷积神经网络(MF-CNN),用于同时学习原始脑电信号以及二维时频图的特征。本研究使用的数据集包含三种运动想象任务:伸展手臂、转动手腕和抓握物体,共纳入25名受试者。在抓握物体与伸展手臂任务的二分类实验中,MF-CNN的平均分类准确率达到78.52%,kappa值为0.57。当使用所有三项任务进行分类时,准确率和kappa值分别为57.06%和0.36。比较结果表明,在二分类和三分类中,MF-CNN的分类性能均高于单CNN分支算法。综上所述,MF-CNN充分利用了脑电信号的时域和频域特征,能够提高单肢体运动想象任务的解码准确率,有助于MI-BCI在脑卒中后运动功能康复训练中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d4c/9992961/4daa0aab352a/fnins-17-1129049-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验