Suppr超能文献

水果、观赏和工业作物的基因组编辑。

Genome editing in fruit, ornamental, and industrial crops.

机构信息

Department of Horticulture, Washington State University, Pullman, WA, USA.

Departamento de Producción Vegetal y Ciencia Forestal, University of Lleida-Agrotecnio CERCA Center, Lleida, Spain.

出版信息

Transgenic Res. 2021 Aug;30(4):499-528. doi: 10.1007/s11248-021-00240-3. Epub 2021 Apr 6.

Abstract

The advent of genome editing has opened new avenues for targeted trait enhancement in fruit, ornamental, industrial, and all specialty crops. In particular, CRISPR-based editing systems, derived from bacterial immune systems, have quickly become routinely used tools for research groups across the world seeking to edit plant genomes with a greater level of precision, higher efficiency, reduced off-target effects, and overall ease-of-use compared to ZFNs and TALENs. CRISPR systems have been applied successfully to a number of horticultural and industrial crops to enhance fruit ripening, increase stress tolerance, modify plant architecture, control the timing of flower development, and enhance the accumulation of desired metabolites, among other commercially-important traits. As editing technologies continue to advance, so too does the ability to generate improved crop varieties with non-transgenic modifications; in some crops, direct transgene-free edits have already been achieved, while in others, T-DNAs have successfully been segregated out through crossing. In addition to the potential to produce non-transgenic edited crops, and thereby circumvent regulatory impediments to the release of new, improved crop varieties, targeted gene editing can speed up trait improvement in crops with long juvenile phases, reducing inputs resulting in faster market introduction to the market. While many challenges remain regarding optimization of genome editing in ornamental, fruit, and industrial crops, the ongoing discovery of novel nucleases with niche specialties for engineering applications may form the basis for additional and potentially crop-specific editing strategies.

摘要

基因组编辑的出现为水果、观赏植物、工业和所有特种作物的目标性状改良开辟了新途径。特别是基于 CRISPR 的编辑系统源自细菌免疫系统,已迅速成为世界各地研究小组的常规工具,它们希望利用更高的精度、更高的效率、降低的脱靶效应以及与 ZFNs 和 TALENs 相比总体上更易于使用的方法来编辑植物基因组。CRISPR 系统已成功应用于许多园艺和工业作物,以促进果实成熟、提高抗逆性、改变植物结构、控制花发育的时间以及增强所需代谢物的积累等其他具有商业重要性的性状。随着编辑技术的不断进步,具有非转基因修饰的改良作物品种的生成能力也在不断提高;在一些作物中,已经实现了直接无转基因编辑,而在另一些作物中,T-DNAs 已通过杂交成功分离。除了生产非转基因编辑作物的潜力,从而规避新的、改良的作物品种释放的监管障碍外,靶向基因编辑还可以加速具有长幼期的作物的性状改良,减少投入,从而更快地推向市场。虽然在观赏植物、水果和工业作物的基因组编辑优化方面仍存在许多挑战,但不断发现具有工程应用特定专业的新型核酸酶可能为额外的、潜在的作物特异性编辑策略奠定基础。

相似文献

1
Genome editing in fruit, ornamental, and industrial crops.
Transgenic Res. 2021 Aug;30(4):499-528. doi: 10.1007/s11248-021-00240-3. Epub 2021 Apr 6.
2
Emerging Genome Engineering Tools in Crop Research and Breeding.
Methods Mol Biol. 2020;2072:165-181. doi: 10.1007/978-1-4939-9865-4_14.
3
Genome editing in cereal crops: an overview.
Transgenic Res. 2021 Aug;30(4):461-498. doi: 10.1007/s11248-021-00259-6. Epub 2021 Jul 14.
4
Genome editing of polyploid crops: prospects, achievements and bottlenecks.
Transgenic Res. 2021 Aug;30(4):337-351. doi: 10.1007/s11248-021-00251-0. Epub 2021 Apr 12.
5
CRISPR/Cas systems: opportunities and challenges for crop breeding.
Plant Cell Rep. 2021 Jun;40(6):979-998. doi: 10.1007/s00299-021-02708-2. Epub 2021 May 11.
6
Genome editing for crop improvement: Challenges and opportunities.
GM Crops Food. 2015;6(4):183-205. doi: 10.1080/21645698.2015.1129937.
7
Perspectives on the Application of Genome-Editing Technologies in Crop Breeding.
Mol Plant. 2019 Aug 5;12(8):1047-1059. doi: 10.1016/j.molp.2019.06.009. Epub 2019 Jun 28.
8
Towards CRISPR/Cas crops - bringing together genomics and genome editing.
New Phytol. 2017 Nov;216(3):682-698. doi: 10.1111/nph.14702. Epub 2017 Aug 1.
9
Modern Trends in Plant Genome Editing: An Inclusive Review of the CRISPR/Cas9 Toolbox.
Int J Mol Sci. 2019 Aug 19;20(16):4045. doi: 10.3390/ijms20164045.
10
Genome Editing of Rice by CRISPR-Cas: End-to-End Pipeline for Crop Improvement.
Methods Mol Biol. 2021;2238:115-134. doi: 10.1007/978-1-0716-1068-8_8.

引用本文的文献

1
Beyond the lab: future-proofing agriculture for climate resilience and stress management.
Front Plant Sci. 2025 Jun 13;16:1565850. doi: 10.3389/fpls.2025.1565850. eCollection 2025.
3
Strategies for delivery of CRISPR/Cas-mediated genome editing to obtain edited plants directly without transgene integration.
Front Genome Ed. 2023 Jul 20;5:1209586. doi: 10.3389/fgeed.2023.1209586. eCollection 2023.
4
Pedigree or identity? How genome editing can fundamentally change the path for crop development.
J Exp Bot. 2023 Apr 27;74(9):2794-2798. doi: 10.1093/jxb/erad033.
5
Preface: Genome editing in plants.
Transgenic Res. 2021 Aug;30(4):317-320. doi: 10.1007/s11248-021-00268-5. Epub 2021 Jul 27.
6
Genome editing for resistance against plant pests and pathogens.
Transgenic Res. 2021 Aug;30(4):427-459. doi: 10.1007/s11248-021-00262-x. Epub 2021 Jun 18.

本文引用的文献

1
Gene editing in plants: progress and challenges.
Natl Sci Rev. 2019 May;6(3):421-437. doi: 10.1093/nsr/nwz005. Epub 2019 Jan 17.
2
Metabolic Engineering Strategies of Industrial Hemp ( L.): A Brief Review of the Advances and Challenges.
Front Plant Sci. 2020 Dec 8;11:580621. doi: 10.3389/fpls.2020.580621. eCollection 2020.
4
Development of a Highly Efficient Multiplex Genome Editing System in Outcrossing Tetraploid Alfalfa ().
Front Plant Sci. 2020 Jul 17;11:1063. doi: 10.3389/fpls.2020.01063. eCollection 2020.
5
Development of multiplex genome editing toolkits for citrus with high efficacy in biallelic and homozygous mutations.
Plant Mol Biol. 2020 Oct;104(3):297-307. doi: 10.1007/s11103-020-01043-6. Epub 2020 Aug 3.
6
Highly efficient DNA-free plant genome editing using virally delivered CRISPR-Cas9.
Nat Plants. 2020 Jul;6(7):773-779. doi: 10.1038/s41477-020-0704-5. Epub 2020 Jun 29.
7
Implementing the CRISPR/Cas9 Technology in Hairy Roots Using Wood-Related Genes.
Int J Mol Sci. 2020 May 12;21(10):3408. doi: 10.3390/ijms21103408.
8
CRISPR/Cas9-Mediated Mutagenesis Adverse to Tomato Plant Growth and MeJA-Induced Fruit Resistance to .
J Agric Food Chem. 2020 May 20;68(20):5529-5538. doi: 10.1021/acs.jafc.9b08069. Epub 2020 May 6.
9
CRISPR/Cas9-mediated targeted mutagenesis of TAS4 and MYBA7 loci in grapevine rootstock 101-14.
Transgenic Res. 2020 Jun;29(3):355-367. doi: 10.1007/s11248-020-00196-w. Epub 2020 Apr 23.
10
CRISPR/Cas9-mediated SlAN2 mutants reveal various regulatory models of anthocyanin biosynthesis in tomato plant.
Plant Cell Rep. 2020 Jun;39(6):799-809. doi: 10.1007/s00299-020-02531-1. Epub 2020 Mar 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验