文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

迈向 CRISPR/Cas 作物——基因组学与基因组编辑的融合。

Towards CRISPR/Cas crops - bringing together genomics and genome editing.

机构信息

School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, 6009, Australia.

Botanical Institute II, Karlsruhe Institute of Technology, Karlsruhe, 76131, Germany.

出版信息

New Phytol. 2017 Nov;216(3):682-698. doi: 10.1111/nph.14702. Epub 2017 Aug 1.


DOI:10.1111/nph.14702
PMID:28762506
Abstract

Contents 682 I. 682 II. 683 III. 684 IV. 685 V. 685 VI. 688 VII. 690 VIII. 694 694 References 694 SUMMARY: With the rapid increase in the global population and the impact of climate change on agriculture, there is a need for crops with higher yields and greater tolerance to abiotic stress. However, traditional crop improvement via genetic recombination or random mutagenesis is a laborious process and cannot keep pace with increasing crop demand. Genome editing technologies such as clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (CRISPR/Cas) allow targeted modification of almost any crop genome sequence to generate novel variation and accelerate breeding efforts. We expect a gradual shift in crop improvement away from traditional breeding towards cycles of targeted genome editing. Crop improvement using genome editing is not constrained by limited existing variation or the requirement to select alleles over multiple breeding generations. However, current applications of crop genome editing are limited by the lack of complete reference genomes, the sparse knowledge of potential modification targets, and the unclear legal status of edited crops. We argue that overcoming technical and social barriers to the application of genome editing will allow this technology to produce a new generation of high-yielding, climate ready crops.

摘要

内容 682 I. 682 II. 683 III. 684 IV. 685 V. 685 VI. 688 VII. 690 VIII. 694 694 参考文献 694 摘要:随着全球人口的快速增长和气候变化对农业的影响,我们需要具有更高产量和更强非生物胁迫耐受性的作物。然而,通过遗传重组或随机诱变进行传统的作物改良是一个繁琐的过程,无法满足不断增长的作物需求。基因组编辑技术,如成簇规律间隔短回文重复(CRISPR)/CRISPR 相关蛋白(CRISPR/Cas),可以靶向修饰几乎任何作物基因组序列,从而产生新的变异并加速育种工作。我们预计,作物改良将逐渐从传统的育种方法转向靶向基因组编辑的循环。利用基因组编辑进行作物改良不受现有变异有限或需要在多个育种世代中选择等位基因的限制。然而,作物基因组编辑的当前应用受到缺乏完整参考基因组、潜在修饰靶标知识稀疏以及编辑作物法律地位不明确等因素的限制。我们认为,克服基因组编辑应用的技术和社会障碍将使这项技术能够生产新一代高产、适应气候变化的作物。

相似文献

[1]
Towards CRISPR/Cas crops - bringing together genomics and genome editing.

New Phytol. 2017-8-1

[2]
CRISPR/Cas systems: opportunities and challenges for crop breeding.

Plant Cell Rep. 2021-6

[3]
Perspectives on the Application of Genome-Editing Technologies in Crop Breeding.

Mol Plant. 2019-6-28

[4]
Genome editing using CRISPR/Cas9-targeted mutagenesis: An opportunity for yield improvements of crop plants grown under environmental stresses.

Plant Physiol Biochem. 2018-3-12

[5]
The Development of Herbicide Resistance Crop Plants Using CRISPR/Cas9-Mediated Gene Editing.

Genes (Basel). 2021-6-12

[6]
CRISPR/Cas: A powerful tool for gene function study and crop improvement.

J Adv Res. 2021-3

[7]
Genome editing of polyploid crops: prospects, achievements and bottlenecks.

Transgenic Res. 2021-8

[8]
Engineering abiotic stress tolerance via CRISPR/ Cas-mediated genome editing.

J Exp Bot. 2020-1-7

[9]
Expanding Gene-Editing Potential in Crop Improvement with Pangenomes.

Int J Mol Sci. 2022-2-18

[10]
Evolution in crop improvement approaches and future prospects of molecular markers to CRISPR/Cas9 system.

Gene. 2020-5-22

引用本文的文献

[1]
Analyses of crop yield dynamics and the development of a multimodal neural network prediction model with G×E×M interactions.

Front Plant Sci. 2025-7-31

[2]
CRISPR/Cas9 editing of enhances drought tolerance in potato (Solanum tuberosum).

Front Plant Sci. 2025-7-10

[3]
Molecular breeding for stress tolerance in sesame.

Mol Genet Genomics. 2025-7-16

[4]
Transcription factor ClTCP4 maintains watermelon resilience to drought by stabilizing antioxidant and photosynthetic systems.

Plant Cell Rep. 2025-7-4

[5]
Unlocking genetic potential: a review of the role of CRISPR/Cas technologies in rapeseed improvement.

Stress Biol. 2025-5-7

[6]
CRISPR-based gene editing in plants: Focus on reagents and their delivery tools.

Bioimpacts. 2024-6-15

[7]
Application of machine learning and genomics for orphan crop improvement.

Nat Commun. 2025-1-24

[8]
The role of pangenomics in orphan crop improvement.

Nat Commun. 2025-1-2

[9]
Advances in molecular research: applications in authentication, genetic diversity, phylogenetics, functional genes, and omics.

Front Plant Sci. 2024-6-27

[10]
Epistasis and pleiotropy-induced variation for plant breeding.

Plant Biotechnol J. 2024-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索