School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, 6009, Australia.
Botanical Institute II, Karlsruhe Institute of Technology, Karlsruhe, 76131, Germany.
New Phytol. 2017 Nov;216(3):682-698. doi: 10.1111/nph.14702. Epub 2017 Aug 1.
Contents 682 I. 682 II. 683 III. 684 IV. 685 V. 685 VI. 688 VII. 690 VIII. 694 694 References 694 SUMMARY: With the rapid increase in the global population and the impact of climate change on agriculture, there is a need for crops with higher yields and greater tolerance to abiotic stress. However, traditional crop improvement via genetic recombination or random mutagenesis is a laborious process and cannot keep pace with increasing crop demand. Genome editing technologies such as clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (CRISPR/Cas) allow targeted modification of almost any crop genome sequence to generate novel variation and accelerate breeding efforts. We expect a gradual shift in crop improvement away from traditional breeding towards cycles of targeted genome editing. Crop improvement using genome editing is not constrained by limited existing variation or the requirement to select alleles over multiple breeding generations. However, current applications of crop genome editing are limited by the lack of complete reference genomes, the sparse knowledge of potential modification targets, and the unclear legal status of edited crops. We argue that overcoming technical and social barriers to the application of genome editing will allow this technology to produce a new generation of high-yielding, climate ready crops.
内容 682 I. 682 II. 683 III. 684 IV. 685 V. 685 VI. 688 VII. 690 VIII. 694 694 参考文献 694 摘要:随着全球人口的快速增长和气候变化对农业的影响,我们需要具有更高产量和更强非生物胁迫耐受性的作物。然而,通过遗传重组或随机诱变进行传统的作物改良是一个繁琐的过程,无法满足不断增长的作物需求。基因组编辑技术,如成簇规律间隔短回文重复(CRISPR)/CRISPR 相关蛋白(CRISPR/Cas),可以靶向修饰几乎任何作物基因组序列,从而产生新的变异并加速育种工作。我们预计,作物改良将逐渐从传统的育种方法转向靶向基因组编辑的循环。利用基因组编辑进行作物改良不受现有变异有限或需要在多个育种世代中选择等位基因的限制。然而,作物基因组编辑的当前应用受到缺乏完整参考基因组、潜在修饰靶标知识稀疏以及编辑作物法律地位不明确等因素的限制。我们认为,克服基因组编辑应用的技术和社会障碍将使这项技术能够生产新一代高产、适应气候变化的作物。
New Phytol. 2017-8-1
Plant Cell Rep. 2021-6
Mol Plant. 2019-6-28
Genes (Basel). 2021-6-12
Transgenic Res. 2021-8
Int J Mol Sci. 2022-2-18
Front Plant Sci. 2025-7-10
Mol Genet Genomics. 2025-7-16
Bioimpacts. 2024-6-15
Nat Commun. 2025-1-24
Nat Commun. 2025-1-2
Plant Biotechnol J. 2024-10