Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
J Chem Theory Comput. 2021 May 11;17(5):3134-3144. doi: 10.1021/acs.jctc.0c01220. Epub 2021 Apr 7.
Many proteins have been shown to function via liquid-liquid phase separation. Computational modeling could offer much needed structural details of protein condensates and reveal the set of molecular interactions that dictate their stability. However, the presence of both ordered and disordered domains in these proteins places a high demand on the model accuracy. Here, we present an algorithm to derive a coarse-grained force field, MOFF, which can model both ordered and disordered proteins with consistent accuracy. It combines maximum entropy biasing, least-squares fitting, and basic principles of energy landscape theory to ensure that MOFF recreates experimental radii of gyration while predicting the folded structures for globular proteins with lower energy. The theta temperature determined from MOFF separates ordered and disordered proteins at 300 K and exhibits a strikingly linear relationship with amino acid sequence composition. We further applied MOFF to study the phase behavior of HP1, an essential protein for post-translational modification and spatial organization of chromatin. The force field successfully resolved the structural difference of two HP1 homologues despite their high sequence similarity. We carried out large-scale simulations with hundreds of proteins to determine the critical temperature of phase separation and uncover multivalent interactions that stabilize higher-order assemblies. In all, our work makes significant methodological strides to connect theories of ordered and disordered proteins and provides a powerful tool for studying liquid-liquid phase separation with near-atomistic details.
许多蛋白质的功能都是通过液-液相分离实现的。计算建模可以为蛋白质凝聚物提供急需的结构细节,并揭示决定其稳定性的一组分子相互作用。然而,这些蛋白质中既有有序结构域又有无序结构域,这对模型精度提出了很高的要求。在这里,我们提出了一种算法来推导粗粒力场 MOFF,该力场可以以一致的精度模拟有序和无序蛋白质。它结合了最大熵偏置、最小二乘拟合和能量景观理论的基本原理,以确保 MOFF 在预测球状蛋白质的折叠结构时能够重现实验的回转半径,同时具有更低的能量。从 MOFF 中确定的 theta 温度在 300 K 时将有序和无序蛋白质分开,并且与氨基酸序列组成呈现出惊人的线性关系。我们进一步应用 MOFF 来研究 HP1 的相行为,HP1 是一种对染色质的翻译后修饰和空间组织至关重要的蛋白质。尽管该力场所研究的两种 HP1 同源物具有很高的序列相似性,但它成功地解析了它们的结构差异。我们进行了数百种蛋白质的大规模模拟,以确定相分离的临界温度,并揭示了稳定更高阶组装的多价相互作用。总之,我们的工作在连接有序和无序蛋白质理论方面取得了重大进展,并提供了一种研究液-液相分离的强大工具,可以实现近原子细节。