Suppr超能文献

一致力场捕获同源物分辨的 HP1 液-液相分离。

Consistent Force Field Captures Homologue-Resolved HP1 Phase Separation.

机构信息

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.

出版信息

J Chem Theory Comput. 2021 May 11;17(5):3134-3144. doi: 10.1021/acs.jctc.0c01220. Epub 2021 Apr 7.

Abstract

Many proteins have been shown to function via liquid-liquid phase separation. Computational modeling could offer much needed structural details of protein condensates and reveal the set of molecular interactions that dictate their stability. However, the presence of both ordered and disordered domains in these proteins places a high demand on the model accuracy. Here, we present an algorithm to derive a coarse-grained force field, MOFF, which can model both ordered and disordered proteins with consistent accuracy. It combines maximum entropy biasing, least-squares fitting, and basic principles of energy landscape theory to ensure that MOFF recreates experimental radii of gyration while predicting the folded structures for globular proteins with lower energy. The theta temperature determined from MOFF separates ordered and disordered proteins at 300 K and exhibits a strikingly linear relationship with amino acid sequence composition. We further applied MOFF to study the phase behavior of HP1, an essential protein for post-translational modification and spatial organization of chromatin. The force field successfully resolved the structural difference of two HP1 homologues despite their high sequence similarity. We carried out large-scale simulations with hundreds of proteins to determine the critical temperature of phase separation and uncover multivalent interactions that stabilize higher-order assemblies. In all, our work makes significant methodological strides to connect theories of ordered and disordered proteins and provides a powerful tool for studying liquid-liquid phase separation with near-atomistic details.

摘要

许多蛋白质的功能都是通过液-液相分离实现的。计算建模可以为蛋白质凝聚物提供急需的结构细节,并揭示决定其稳定性的一组分子相互作用。然而,这些蛋白质中既有有序结构域又有无序结构域,这对模型精度提出了很高的要求。在这里,我们提出了一种算法来推导粗粒力场 MOFF,该力场可以以一致的精度模拟有序和无序蛋白质。它结合了最大熵偏置、最小二乘拟合和能量景观理论的基本原理,以确保 MOFF 在预测球状蛋白质的折叠结构时能够重现实验的回转半径,同时具有更低的能量。从 MOFF 中确定的 theta 温度在 300 K 时将有序和无序蛋白质分开,并且与氨基酸序列组成呈现出惊人的线性关系。我们进一步应用 MOFF 来研究 HP1 的相行为,HP1 是一种对染色质的翻译后修饰和空间组织至关重要的蛋白质。尽管该力场所研究的两种 HP1 同源物具有很高的序列相似性,但它成功地解析了它们的结构差异。我们进行了数百种蛋白质的大规模模拟,以确定相分离的临界温度,并揭示了稳定更高阶组装的多价相互作用。总之,我们的工作在连接有序和无序蛋白质理论方面取得了重大进展,并提供了一种研究液-液相分离的强大工具,可以实现近原子细节。

相似文献

1
Consistent Force Field Captures Homologue-Resolved HP1 Phase Separation.一致力场捕获同源物分辨的 HP1 液-液相分离。
J Chem Theory Comput. 2021 May 11;17(5):3134-3144. doi: 10.1021/acs.jctc.0c01220. Epub 2021 Apr 7.
2
Unifying coarse-grained force fields for folded and disordered proteins.统一折叠和无规蛋白质的粗粒力场。
Curr Opin Struct Biol. 2022 Feb;72:63-70. doi: 10.1016/j.sbi.2021.08.006. Epub 2021 Sep 15.
3
Maximum Entropy Optimized Force Field for Intrinsically Disordered Proteins.最大熵优化力场用于无序蛋白质。
J Chem Theory Comput. 2020 Jan 14;16(1):773-781. doi: 10.1021/acs.jctc.9b00932. Epub 2019 Dec 13.
8
Temperature-Controlled Liquid-Liquid Phase Separation of Disordered Proteins.无序蛋白质的温度控制液-液相分离
ACS Cent Sci. 2019 May 22;5(5):821-830. doi: 10.1021/acscentsci.9b00102. Epub 2019 May 1.
9
Sequence determinants of protein phase behavior from a coarse-grained model.从粗粒度模型中得出蛋白质相行为的序列决定因素。
PLoS Comput Biol. 2018 Jan 24;14(1):e1005941. doi: 10.1371/journal.pcbi.1005941. eCollection 2018 Jan.

引用本文的文献

6
Prediction of phase-separation propensities of disordered proteins from sequence.从序列预测无序蛋白质的相分离倾向
Proc Natl Acad Sci U S A. 2025 Apr;122(13):e2417920122. doi: 10.1073/pnas.2417920122. Epub 2025 Mar 25.

本文引用的文献

4
Biomolecular Condensates in the Nucleus.核内生物分子凝聚物。
Trends Biochem Sci. 2020 Nov;45(11):961-977. doi: 10.1016/j.tibs.2020.06.007. Epub 2020 Jul 17.
5
Pseudo-Improper-Dihedral Model for Intrinsically Disordered Proteins.无规卷曲蛋白质的伪二面角模型。
J Chem Theory Comput. 2020 Jul 14;16(7):4726-4733. doi: 10.1021/acs.jctc.0c00338. Epub 2020 Jun 12.
7
Environment-Specific Force Field for Intrinsically Disordered and Ordered Proteins.环境特定力场用于无序和有序蛋白质。
J Chem Inf Model. 2020 Apr 27;60(4):2257-2267. doi: 10.1021/acs.jcim.0c00059. Epub 2020 Apr 7.
8
Machine learning for protein folding and dynamics.机器学习在蛋白质折叠和动力学中的应用。
Curr Opin Struct Biol. 2020 Feb;60:77-84. doi: 10.1016/j.sbi.2019.12.005. Epub 2019 Dec 24.
10
Maximum Entropy Optimized Force Field for Intrinsically Disordered Proteins.最大熵优化力场用于无序蛋白质。
J Chem Theory Comput. 2020 Jan 14;16(1):773-781. doi: 10.1021/acs.jctc.9b00932. Epub 2019 Dec 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验