Suppr超能文献

使用不稳定的位点特异性试剂对不可逆酶抑制动力学进行的半衰期分析。

Half-time analysis of the kinetics of irreversible enzyme inhibition by an unstable site-specific reagent.

作者信息

Topham C M

机构信息

Department of Biochemistry, Trinity College, University of Dublin, Ireland.

出版信息

Biochim Biophys Acta. 1988 Jun 29;955(1):65-76. doi: 10.1016/0167-4838(88)90180-x.

Abstract

The half-time method for the determination of Michaelis parameters from enzyme progress-curve data (Wharton, C.W. and Szawelski, R.J. (1982) Biochem. J. 203, 351-360) has been adapted for analysis of the kinetics of irreversible enzyme inhibition by an unstable site-specific inhibitor. The method is applicable to a model in which a product (R) of the decomposition of the site-specific reagent, retaining the chemical moiety responsible for inhibitor specificity, binds reversibly to the enzyme with dissociation constant Kr: (formula; see text). Half-time plots of simulated enzyme inactivation time-course data are shown to be unbiased, and excellent estimates of the apparent second-order rate constant for inactivation (k +2/Ki) and Kr can be obtained from a series of experiments with varying initial concentrations of inhibitor. Reliable estimates of k +2 and Ki individually are dependent upon the relative magnitudes of the kinetic parameters describing inactivation. The special case, Kr = Ki, is considered in some detail, and the integrated rate equation describing enzyme inactivation shown to be analogous to that for a simple bimolecular reaction between enzyme and an unstable irreversible inhibitor without the formation of a reversible enzyme-inhibitor complex. The half-time method can be directly extended to the kinetics of enzyme inactivation by an unstable mechanism-based (suicide) inhibitor, provided that the inhibitor is not also a substrate for the enzyme.

摘要

从酶促反应进程曲线数据中测定米氏参数的半衰期方法(沃顿,C.W.和萨韦尔斯基,R.J.(1982年)《生物化学杂志》203卷,351 - 360页)已被改编用于分析不稳定的位点特异性抑制剂对酶不可逆抑制的动力学。该方法适用于这样一种模型:位点特异性试剂分解产生的产物(R)保留了负责抑制剂特异性的化学部分,以解离常数Kr可逆地与酶结合:(公式;见正文)。模拟的酶失活时间进程数据的半衰期图显示是无偏差的,并且通过一系列不同初始抑制剂浓度的实验,可以得到失活的表观二级速率常数(k +2/Ki)和Kr的良好估计值。单独对k +2和Ki的可靠估计取决于描述失活的动力学参数的相对大小。详细考虑了特殊情况Kr = Ki,并表明描述酶失活的积分速率方程类似于酶与不稳定的不可逆抑制剂之间简单双分子反应的方程,且不形成可逆的酶 - 抑制剂复合物。只要抑制剂不是酶的底物,半衰期方法可直接扩展到基于机制的(自杀性)不稳定抑制剂对酶失活的动力学研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验