Rosa Angelo, Smrek Jan, Turner Matthew S, Michieletto Davide
SISSA (Scuola Internazionale Superiore di Studi Avanzati), Via Bonomea 265, 34136 Trieste, Italy.
Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria.
ACS Macro Lett. 2020 May 19;9(5):743-748. doi: 10.1021/acsmacrolett.0c00197. Epub 2020 May 5.
The relationship between polymer topology and bulk rheology remains a key question in soft matter physics. Architecture-specific constraints (or threadings) are thought to control the dynamics of ring polymers in ring-linear blends, which thus affects the viscosity to range between that of the pure rings and a value larger, but still comparable to, that of the pure linear melt. Here we consider qualitatively different systems of linear and ring polymers, fused together in "chimeric" architectures. The simplest example of this family is a "tadpole"-shaped polymer, a single ring fused to the end of a single linear chain. We show that polymers with this architecture display a threading-induced dynamical transition that substantially slows chain relaxation. Our findings shed light on how threadings control dynamics and may inform design principles for chimeric polymers with topologically tunable bulk rheological properties.
聚合物拓扑结构与本体流变学之间的关系仍然是软物质物理学中的一个关键问题。特定结构的限制(或贯穿)被认为控制着环状聚合物在环 - 线性共混物中的动力学,从而影响粘度,使其介于纯环状聚合物的粘度和一个更大但仍与纯线性熔体的粘度相当的值之间。在这里,我们考虑线性和环状聚合物在“嵌合”结构中融合在一起的性质截然不同的体系。这个家族最简单的例子是“蝌蚪”形聚合物,即单个环连接到单个线性链的末端。我们表明,具有这种结构的聚合物表现出由贯穿引起的动力学转变,这会显著减缓链松弛。我们的发现揭示了贯穿如何控制动力学,并可能为具有拓扑可调本体流变性质的嵌合聚合物提供设计原则。