Key Laboratory of Advanced Energy Materials Chemistry, (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.
China Electronic Product Reliability and Environmental Testing Research Institute (CEPREI), Guangzhou, 510610, P. R. China.
ChemSusChem. 2021 Jun 21;14(12):2521-2528. doi: 10.1002/cssc.202100502. Epub 2021 Apr 22.
The electrocatalytic nitrogen reduction reaction (ENRR) under ambient conditions is considered as a promising process to produce ammonia. Towards highly efficient catalysts, here an optimized one-step pyrolysis strategy was tailored to design yolk-shell microcages (YS Co@C/BLCNTs), consisting of Co nanocrystals encapsulated in N-doped carbon framework and bridged by bamboo-like carbon nanotubes (BLCNTs). The cavity created between yolk and shell not only served as a "micro-bag" to store the reactant N and enhance its dissolution, but also induced a "cage effect" to confine the diffusion of reaction intermediate, hence making the reaction proceed in the direction of producing NH . This catalyst displayed excellent catalytic activities for ENRR: a high NH yield of 12.87 μg mg h at a high faradaic efficiency of 20.7 % at -0.45 V (vs. reversible hydrogen electrode, RHE). After 5 cycles of consecutive ENRR process, the NH yield rate was 11.29 μg mg h , indicating the excellent electrocatalytic stability. These results provide a structural engineering for ENRR catalyst with doped N, cooperating with non-precious metal to activate the inert triple bond of N and achieve NH fixation.
在环境条件下进行的电催化氮还原反应(ENRR)被认为是生产氨的一种很有前途的方法。为了获得高效的催化剂,本研究采用优化的一步热解法设计了蛋黄壳微笼(YS Co@C/BLCNTs),由包裹在氮掺杂碳骨架中的 Co 纳米晶体和竹状碳纳米管(BLCNTs)桥接而成。蛋黄和壳之间形成的空腔不仅充当了“微袋”来储存反应物 N 并增强其溶解,还诱导了“笼效应”来限制反应中间体的扩散,从而使反应朝着产生 NH 的方向进行。该催化剂在 ENRR 中表现出优异的催化活性:在-0.45 V(相对于可逆氢电极,RHE)时,法拉第效率为 20.7%时,NH 的产率高达 12.87 μg·mg -1 ·h -1 。在连续进行 5 次 ENRR 过程后,NH 的产率为 11.29 μg·mg -1 ·h -1 ,表明其具有优异的电催化稳定性。这些结果为掺杂 N 的 ENRR 催化剂提供了一种结构工程,与非贵金属协同作用,激活 N 的惰性三键,实现 NH 的固定。