Gu Hongfei, Li Jiani, Niu Xiangfu, Lin Jie, Chen Li-Wei, Zhang Zedong, Shi Ziqian, Sun Zhiyi, Liu Qingqing, Zhang Peng, Yan Wensheng, Wang Yu, Zhang Liang, Li Pengfei, Li Xinyuan, Wang Dingsheng, Yin Penggang, Chen Wenxing
Energy & Catalysis Center, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China.
Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
ACS Nano. 2023 Nov 14;17(21):21838-21849. doi: 10.1021/acsnano.3c07857. Epub 2023 Nov 1.
The electrochemical nitrogen reduction reaction (eNRR) under mild conditions emerges as a promising approach to produce ammonia (NH) compared to the typical Haber-Bosch process. Herein, we design an asymmetrically coordinated -block antimony single-atom catalyst immobilized on nitrogen-doped TiCT (Sb SA/N-TiCT) for eNRR, which exhibits ultrahigh NH yield (108.3 μg h mg) and excellent Faradaic efficiency (41.2%) at -0.3 V vs RHE. Complementary spectroscopies with theoretical calculations reveal that the nitrogen-bridged two titanium atoms triggered by an adjacent asymmetrical Sb-NC moiety act as the active sites for facilitating the protonation of the rate-determining step from *N to *NH and the kinetic conversion of key intermediates during eNRR. Moreover, the introduction of Sb-NC promotes the formation of oxygen vacancies to expose more titanium sites. This work presents a strategy for single-atom-decorated ultrathin two-dimensional materials with the aim of simultaneously enhancing NH yield and Faradaic efficiency for electrocatalytic nitrogen reduction.
与典型的哈伯-博施法相比,温和条件下的电化学氮还原反应(eNRR)成为一种有前景的制氨(NH₃)方法。在此,我们设计了一种固定在氮掺杂Ti₃C₂Tₓ上的不对称配位β-块体锑单原子催化剂(Sb SA/N-Ti₃C₂Tₓ)用于eNRR,在相对于可逆氢电极(RHE)为-0.3 V时,该催化剂表现出超高的NH₃产率(108.3 μg h⁻¹ mg⁻¹)和优异的法拉第效率(41.2%)。与理论计算互补的光谱表明,由相邻的不对称Sb-N₄C₂部分触发的氮桥连两个钛原子作为活性位点,促进了eNRR中速率决定步骤从N到NH的质子化以及关键中间体的动力学转化。此外,Sb-N₄C₂的引入促进了氧空位的形成,以暴露出更多的钛位点。这项工作提出了一种单原子修饰超薄二维材料的策略,旨在同时提高电催化氮还原的NH₃产率和法拉第效率。