Department of Human Genetics, School of Medicine, University of Utah, Salt Lake City, Utah, United States of America.
Utah Center for Genetic Discovery, School of Medicine, University of Utah, Salt Lake City, Utah, United States of America.
PLoS One. 2021 Apr 8;16(4):e0241253. doi: 10.1371/journal.pone.0241253. eCollection 2021.
A substantial fraction of the human genome is difficult to interrogate with short-read DNA sequencing technologies due to paralogy, complex haplotype structures, or tandem repeats. Long-read sequencing technologies, such as Oxford Nanopore's MinION, enable direct measurement of complex loci without introducing many of the biases inherent to short-read methods, though they suffer from relatively lower throughput. This limitation has motivated recent efforts to develop amplification-free strategies to target and enrich loci of interest for subsequent sequencing with long reads. Here, we present CaBagE, a method for target enrichment that is efficient and useful for sequencing large, structurally complex targets. The CaBagE method leverages the stable binding of Cas9 to its DNA target to protect desired fragments from digestion with exonuclease. Enriched DNA fragments are then sequenced with Oxford Nanopore's MinION long-read sequencing technology. Enrichment with CaBagE resulted in a median of 116X coverage (range 39-416) of target loci when tested on five genomic targets ranging from 4-20kb in length using healthy donor DNA. Four cancer gene targets were enriched in a single reaction and multiplexed on a single MinION flow cell. We further demonstrate the utility of CaBagE in two ALS patients with C9orf72 short tandem repeat expansions to produce genotype estimates commensurate with genotypes derived from repeat-primed PCR for each individual. With CaBagE there is a physical enrichment of on-target DNA in a given sample prior to sequencing. This feature allows adaptability across sequencing platforms and potential use as an enrichment strategy for applications beyond sequencing. CaBagE is a rapid enrichment method that can illuminate regions of the 'hidden genome' underlying human disease.
由于基因的旁系同源、复杂单倍型结构或串联重复等原因,人类基因组的很大一部分很难用短读长 DNA 测序技术进行检测。长读长测序技术,如 Oxford Nanopore 的 MinION,能够直接测量复杂的基因座,而不会引入短读长方法固有的许多偏倚,尽管它们的通量相对较低。这种局限性促使人们最近努力开发无扩增策略,以靶向和富集感兴趣的基因座,然后用长读长进行测序。在这里,我们提出了一种用于靶向富集的方法 CaBagE,它对于测序大的、结构复杂的靶标非常有效和有用。CaBagE 方法利用 Cas9 与 DNA 靶标的稳定结合,保护所需的片段不受外切酶的消化。然后用 Oxford Nanopore 的 MinION 长读长测序技术对富集的 DNA 片段进行测序。当用健康供体 DNA 对长度为 4-20kb 的五个基因组靶标进行测试时,CaBagE 富集的结果显示,靶标基因座的平均覆盖率为 116X(范围为 39-416)。在单个反应中,四个癌症基因靶标被富集并在单个 MinION 流动池上进行多重化。我们进一步在两名 C9orf72 短串联重复扩增的 ALS 患者中证明了 CaBagE 的实用性,以产生与每个个体的重复引物 PCR 衍生的基因型相当的基因型估计。通过 CaBagE,在测序前对给定样本中的靶标 DNA 进行物理富集。该功能允许跨测序平台的适应性以及作为除测序之外的应用的富集策略的潜在用途。CaBagE 是一种快速的富集方法,可以揭示人类疾病背后的“隐藏基因组”区域。