School of Medicine, University of New South Wales, Sydney, 2052, Australia.
Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.
Acta Neuropathol Commun. 2021 May 25;9(1):98. doi: 10.1186/s40478-021-01201-x.
Short tandem repeat (STR) expansion disorders are an important cause of human neurological disease. They have an established role in more than 40 different phenotypes including the myotonic dystrophies, Fragile X syndrome, Huntington's disease, the hereditary cerebellar ataxias, amyotrophic lateral sclerosis and frontotemporal dementia.
STR expansions are difficult to detect and may explain unsolved diseases, as highlighted by recent findings including: the discovery of a biallelic intronic 'AAGGG' repeat in RFC1 as the cause of cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS); and the finding of 'CGG' repeat expansions in NOTCH2NLC as the cause of neuronal intranuclear inclusion disease and a range of clinical phenotypes. However, established laboratory techniques for diagnosis of repeat expansions (repeat-primed PCR and Southern blot) are cumbersome, low-throughput and poorly suited to parallel analysis of multiple gene regions. While next generation sequencing (NGS) has been increasingly used, established short-read NGS platforms (e.g., Illumina) are unable to genotype large and/or complex repeat expansions. Long-read sequencing platforms recently developed by Oxford Nanopore Technology and Pacific Biosciences promise to overcome these limitations to deliver enhanced diagnosis of repeat expansion disorders in a rapid and cost-effective fashion.
We anticipate that long-read sequencing will rapidly transform the detection of short tandem repeat expansion disorders for both clinical diagnosis and gene discovery.
短串联重复(STR)扩展紊乱是人类神经疾病的一个重要原因。它们在超过 40 种不同的表型中具有明确的作用,包括肌强直性营养不良、脆性 X 综合征、亨廷顿病、遗传性小脑共济失调、肌萎缩侧索硬化症和额颞叶痴呆。
STR 扩展难以检测,可能解释未解决的疾病,最近的发现强调了这一点,包括:在 RFC1 中发现双等位基因内含子“AAGGG”重复是小脑共济失调、神经病和前庭反射消失综合征(CANVAS)的原因;以及在 NOTCH2NLC 中发现“CGG”重复扩展是神经元核内包涵体病和一系列临床表型的原因。然而,用于重复扩展诊断的既定实验室技术(重复引物 PCR 和 Southern 印迹)繁琐、低通量且不适合多个基因区域的并行分析。虽然下一代测序(NGS)的使用越来越多,但既定的短读长 NGS 平台(例如 Illumina)无法对大型和/或复杂重复扩展进行基因分型。牛津纳米孔技术和太平洋生物科学公司最近开发的长读长测序平台有望克服这些限制,以快速、经济高效的方式提供重复扩展紊乱的增强诊断。
我们预计长读长测序将迅速改变短串联重复扩展紊乱的检测,用于临床诊断和基因发现。