Suppr超能文献

基于深度学习的宫颈癌高剂量率近距离放疗中危及器官的自动分割。

Deep learning-based auto-segmentation of organs at risk in high-dose rate brachytherapy of cervical cancer.

机构信息

Department of Medical Physics, Iran University of Medical Sciences, Tehran, Iran.

Department of Medical Physics, Iran University of Medical Sciences, Tehran, Iran.

出版信息

Radiother Oncol. 2021 Jun;159:231-240. doi: 10.1016/j.radonc.2021.03.030. Epub 2021 Apr 6.

Abstract

BACKGROUND AND PURPOSE

Delineation of organs at risk (OARs), such as the bladder, rectum and sigmoid, plays an important role in the delivery of optimal absorbed dose to the target owing to the steep gradient in high-dose rate brachytherapy (HDR-BT). In this work, we propose a deep convolutional neural network-based approach for fast and reproducible auto-contouring of OARs in HDR-BT.

MATERIALS AND METHODS

Images of 113 patients with locally-advanced cervical cancer were utilized in this study. We used ResU-Net deep convolutional neural network architecture, which uses long and short skip connections to improve the feature extraction procedure and the accuracy of segmentation. Seventy-three patients chosen randomly were used for training, 10 patients for validation, and 30 patients for testing. Well established quantitative metrics, such as Dice similarity coefficient (DSC), Hausdorff distance (HD), and average symmetric surface distance (ASSD), were used for evaluation.

RESULTS

The DSC values for the test dataset were 95.7 ± 3.7%, 96.6 ± 1.5% and 92.2 ± 3.3% for the bladder, rectum, and sigmoid, respectively. The HD values (mm) were 4.05 ± 5.17, 1.96 ± 2.19 and 3.15 ± 2.03 for the bladder, rectum, and sigmoid, respectively. The ASSDs were 1.04 ± 0.97, 0.45 ± 0.09 and 0.79 ± 0.25 for the bladder, rectum, and sigmoid, respectively.

CONCLUSION

The proposed deep convolutional neural network model achieved a good agreement between the predicted and manually defined contours of OARs, thus improving the reproducibility of contouring in brachytherapy workflow.

摘要

背景与目的

在高剂量率近距离放射治疗(HDR-BT)中,由于剂量梯度陡峭,因此明确危及器官(OAR)的边界(如膀胱、直肠和乙状结肠)对于将最佳吸收剂量递送至靶区非常重要。在这项工作中,我们提出了一种基于深度卷积神经网络的方法,用于快速、可重复地对 HDR-BT 中的 OAR 进行自动勾画。

材料与方法

本研究使用了 113 例局部晚期宫颈癌患者的图像。我们使用了 ResU-Net 深度卷积神经网络架构,该架构使用长短跳跃连接来改进特征提取过程和分割的准确性。随机选择 73 例患者用于训练,10 例患者用于验证,30 例患者用于测试。使用了公认的定量指标,如 Dice 相似系数(DSC)、Hausdorff 距离(HD)和平均对称表面距离(ASSD)进行评估。

结果

测试数据集的 DSC 值分别为膀胱、直肠和乙状结肠的 95.7±3.7%、96.6±1.5%和 92.2±3.3%。HD 值(mm)分别为膀胱、直肠和乙状结肠的 4.05±5.17、1.96±2.19 和 3.15±2.03。ASSD 值分别为膀胱、直肠和乙状结肠的 1.04±0.97、0.45±0.09 和 0.79±0.25。

结论

所提出的深度卷积神经网络模型在 OAR 的预测轮廓和手动定义轮廓之间达到了良好的一致性,从而提高了近距离放射治疗工作流程中勾画的可重复性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验