Suppr超能文献

阿莫那非(NSC 308847)药代动力学的有限采样模型。

Limited sampling models for amonafide (NSC 308847) pharmacokinetics.

作者信息

Ratain M J, Staubus A E, Schilsky R L, Malspeis L

机构信息

Department of Medicine, University of Chicago Pritzker School of Medicine, Illinois.

出版信息

Cancer Res. 1988 Jul 15;48(14):4127-30.

PMID:3383202
Abstract

The limited sampling model (LSM) offers a means of estimating the area under the concentration-time curve (AUC) from only two timed plasma concentrations. In this study, pharmacokinetic profiles were simulated for 23 patients treated with amonafide, using each patient's individual pharmacokinetic parameters. Data were simulated for a dose of 250 mg/m2 administered over 1 h. The initial 15 patients formed the training data set. Based on the training data set, five different LSMs were generated, with the multiple r ranging from 0.92 to 0.98. A single model was selected as optimal: AUC (micrograms min/ml) = 292.9 (min) C45 (micrograms/ml) + 3262 (min) C1440 (micrograms/ml) + 21.8 (micrograms min/ml) dose (mg/m2)/250 mg/m2 where C45 = 45-min plasma concentration and C1440 = 24-h plasma concentration. This model was revalidated on a second test data set of seven patients actually treated with a 1-h infusion. The relative root mean square predictive error was 15.8%, acceptable for most clinical uses. We conclude that the LSM is a powerful tool for estimation of the AUC in a large patient population. The LSM may facilitate population pharmacodynamic studies in conjunction with Phase II trials.

摘要

有限采样模型(LSM)提供了一种仅根据两个定时血浆浓度来估算浓度-时间曲线下面积(AUC)的方法。在本研究中,使用每位患者的个体药代动力学参数,对23例接受氨萘非特治疗的患者的药代动力学特征进行了模拟。模拟了在1小时内给予250mg/m²剂量的数据。最初的15例患者构成了训练数据集。基于该训练数据集,生成了5种不同的LSM,复相关系数范围为0.92至0.98。选择了一个单一模型作为最佳模型:AUC(微克·分钟/毫升)=292.9(分钟)×C45(微克/毫升)+3262(分钟)×C1440(微克/毫升)+21.8(微克·分钟/毫升)×剂量(毫克/m²)/250mg/m²,其中C45为45分钟时的血浆浓度,C1440为24小时时的血浆浓度。该模型在第二个由7例实际接受1小时输注治疗的患者组成的测试数据集上进行了重新验证。相对均方根预测误差为15.8%,对于大多数临床应用来说是可以接受的。我们得出结论,LSM是在大量患者群体中估算AUC的有力工具。LSM可能有助于结合II期试验进行群体药效学研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验