Cochin University of Science and Technology, India.
Indiana University, USA.
Health Informatics J. 2021 Apr-Jun;27(2):14604582211007537. doi: 10.1177/14604582211007537.
Online health communities (OHC) provide various opportunities for patients with chronic or life-threatening illnesses, especially for cancer patients and survivors. A better understanding of the sentiment dynamics of patients in OHCs can help in the precise formulation of the needs during their treatment. The current study investigated the sentiment dynamics in patients' narratives in a Breast Cancer community group (Breastcancer.org) to identify the changes in emotions, thoughts, stress, and coping mechanisms while undergoing treatment options, particularly chemotherapy, radiation, and surgery. Sentiment dynamics of users' posts was performed using a deep learning model. A sentiment change analysis was performed to measure change in the satisfaction level of the users. The deep learning model BiLSTM with sentiment embedding features provided a better F1-score of 91.9%. Sentiment dynamics can assess the difference in satisfaction level the users acquire by interacting with other users in the forum. A comparison of the proposed model with existing models revealed the effectiveness of this methodology.
在线健康社区(OHC)为患有慢性或危及生命的疾病的患者,特别是癌症患者和幸存者,提供了各种机会。更好地了解 OHC 中患者的情绪动态有助于在治疗期间准确确定需求。本研究调查了乳腺癌社区小组(Breastcancer.org)中患者叙述中的情绪动态,以确定在接受治疗选择(特别是化疗、放疗和手术)时情绪、想法、压力和应对机制的变化。使用深度学习模型对用户帖子的情绪动态进行了分析。进行了情绪变化分析以衡量用户满意度的变化。具有情感嵌入特征的深度学习模型 BiLSTM 提供了更好的 F1 得分为 91.9%。情绪动态可以评估用户通过与论坛中的其他用户交互获得的满意度水平的差异。与现有模型的比较表明了该方法的有效性。