Suppr超能文献

基于BERT-LDA模型的在线健康社区用户信息需求研究

A Study on Online Health Community Users' Information Demands Based on the BERT-LDA Model.

作者信息

Xiang Minhao, Zhong Dongdong, Han Minghua, Lv Kun

机构信息

Business School, Ningbo University, Ningbo 315211, China.

出版信息

Healthcare (Basel). 2023 Jul 27;11(15):2142. doi: 10.3390/healthcare11152142.

Abstract

As the economy and society develop and the standard of living improves, people's health awareness increases and the demand for health information grows. This study introduces an advanced BERT-LDA model to conduct topic-sentiment analysis within online health communities. It examines nine primary categories of user information requirements: causes, symptoms and manifestations, examination and diagnosis, treatment, self-management and regulation, impact, prevention, social life, and knowledge acquisition. By analyzing the distribution of positive and negative sentiments across each topic, the correlation between various health information demands and emotional expressions is investigated. The model established in this paper integrates BERT's semantic comprehension with LDA's topic modeling capabilities, enhancing the accuracy of topic identification and sentiment analysis while providing a more comprehensive evaluation of user information demands. This research furthers our understanding of users' emotional reactions and presents valuable insights for delivering personalized health information in online communities.

摘要

随着经济和社会的发展以及生活水平的提高,人们的健康意识增强,对健康信息的需求也不断增长。本研究引入一种先进的BERT-LDA模型,以在在线健康社区内进行主题情感分析。它考察了用户信息需求的九个主要类别:病因、症状和表现、检查与诊断、治疗、自我管理与调节、影响、预防、社会生活以及知识获取。通过分析每个主题中积极和消极情绪的分布,研究各种健康信息需求与情感表达之间的相关性。本文建立的模型将BERT的语义理解与LDA的主题建模能力相结合,提高了主题识别和情感分析的准确性,同时对用户信息需求提供了更全面的评估。这项研究加深了我们对用户情感反应的理解,并为在线社区提供个性化健康信息提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94d3/10419037/8843672a69fd/healthcare-11-02142-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验