Suppr超能文献

综合临床、分子和计算分析鉴定类风湿关节炎抗 TNF 反应的新型生物标志物和差异特征。

Integrative Clinical, Molecular, and Computational Analysis Identify Novel Biomarkers and Differential Profiles of Anti-TNF Response in Rheumatoid Arthritis.

机构信息

Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofia, Universidad de Cordoba, Córdoba, Spain.

Hospital Universitario de Jaen, Jaén, Spain.

出版信息

Front Immunol. 2021 Mar 23;12:631662. doi: 10.3389/fimmu.2021.631662. eCollection 2021.

Abstract

This prospective multicenter study developed an integrative clinical and molecular longitudinal study in Rheumatoid Arthritis (RA) patients to explore changes in serologic parameters following anti-TNF therapy (TNF inhibitors, TNFi) and built on machine-learning algorithms aimed at the prediction of TNFi response, based on clinical and molecular profiles of RA patients. A total of 104 RA patients from two independent cohorts undergoing TNFi and 29 healthy donors (HD) were enrolled for the discovery and validation of prediction biomarkers. Serum samples were obtained at baseline and 6 months after treatment, and therapeutic efficacy was evaluated. Serum inflammatory profile, oxidative stress markers and NETosis-derived bioproducts were quantified and miRNomes were recognized by next-generation sequencing. Then, clinical and molecular changes induced by TNFi were delineated. Clinical and molecular signatures predictors of clinical response were assessed with supervised machine learning methods, using regularized logistic regressions. Altered inflammatory, oxidative and NETosis-derived biomolecules were found in RA patients vs. HD, closely interconnected and associated with specific miRNA profiles. This altered molecular profile allowed the unsupervised division of three clusters of RA patients, showing distinctive clinical phenotypes, further linked to the TNFi effectiveness. Moreover, TNFi treatment reversed the molecular alterations in parallel to the clinical outcome. Machine-learning algorithms in the discovery cohort identified both, clinical and molecular signatures as potential predictors of response to TNFi treatment with high accuracy, which was further increased when both features were integrated in a mixed model (AUC: 0.91). These results were confirmed in the validation cohort. Our overall data suggest that: 1. RA patients undergoing anti-TNF-therapy conform distinctive clusters based on altered molecular profiles, which are directly linked to their clinical status at baseline. 2. Clinical effectiveness of anti-TNF therapy was divergent among these molecular clusters and associated with a specific modulation of the inflammatory response, the reestablishment of the altered oxidative status, the reduction of NETosis, and the reversion of related altered miRNAs. 3. The integrative analysis of the clinical and molecular profiles using machine learning allows the identification of novel signatures as potential predictors of therapeutic response to TNFi therapy.

摘要

这项前瞻性多中心研究在类风湿关节炎(RA)患者中开展了一项综合临床和分子纵向研究,旨在探索抗 TNF 治疗(TNF 抑制剂,TNFi)后血清学参数的变化,并基于 RA 患者的临床和分子特征,构建基于机器学习算法的 TNFi 反应预测。共纳入来自两个独立队列的 104 名接受 TNFi 治疗的 RA 患者和 29 名健康供体(HD)进行预测生物标志物的发现和验证。在治疗后 6 个月时采集血清样本,并评估治疗效果。定量检测血清炎症谱、氧化应激标志物和 NETosis 衍生的生物产物,并通过下一代测序识别 miRNomes。然后,描绘了 TNFi 引起的临床和分子变化。使用正则化逻辑回归等有监督机器学习方法评估预测临床反应的临床和分子特征。与 HD 相比,RA 患者存在改变的炎症、氧化和 NETosis 衍生生物分子,这些生物分子紧密相互关联,并与特定的 miRNA 谱相关。这种改变的分子谱允许对 RA 患者进行无监督的分组,显示出独特的临床表型,进一步与 TNFi 的有效性相关。此外,TNFi 治疗与临床疗效平行地逆转了分子变化。在发现队列中,机器学习算法确定了临床和分子特征都是 TNFi 治疗反应的潜在预测因子,当将两个特征整合到混合模型中时,准确性进一步提高(AUC:0.91)。这些结果在验证队列中得到了证实。我们的综合数据表明:1. 接受抗 TNF 治疗的 RA 患者根据改变的分子谱形成独特的聚类,这些聚类与他们基线时的临床状态直接相关。2. 这些分子聚类中抗 TNF 治疗的临床疗效存在差异,并与炎症反应的特定调节、改变的氧化状态的重建、NETosis 的减少以及相关改变的 miRNAs 的逆转相关。3. 使用机器学习对临床和分子特征进行综合分析,可以识别新的特征作为 TNFi 治疗反应的潜在预测因子。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验