Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital.
Translational Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
Rheumatology (Oxford). 2022 Apr 11;61(4):1680-1689. doi: 10.1093/rheumatology/keab521.
OBJECTIVES: Advances in immunotherapy by blocking TNF have remarkably improved treatment outcomes for Rheumatoid arthritis (RA) patients. Although treatment specifically targets TNF, the downstream mechanisms of immune suppression are not completely understood. The aim of this study was to detect biomarkers and expression signatures of treatment response to TNF inhibition. METHODS: Peripheral blood mononuclear cells (PBMCs) from 39 female patients were collected before anti-TNF treatment initiation (day 0) and after 3 months. The study cohort included patients previously treated with MTX who failed to respond adequately. Response to treatment was defined based on the EULAR criteria and classified 23 patients as responders and 16 as non-responders. We investigated differences in gene expression in PBMCs, the proportion of cell types and cell phenotypes in peripheral blood using flow cytometry and the level of proteins in plasma. Finally, we used machine learning models to predict non-response to anti-TNF treatment. RESULTS: The gene expression analysis in baseline samples revealed notably higher expression of the gene EPPK1 in future responders. We detected the suppression of genes and proteins following treatment, including suppressed expression of the T cell inhibitor gene CHI3L1 and its protein YKL-40. The gene expression results were replicated in an independent cohort. Finally, machine learning models mainly based on transcriptomic data showed high predictive utility in classifying non-response to anti-TNF treatment in RA. CONCLUSIONS: Our integrative multi-omics analyses identified new biomarkers for the prediction of response, found pathways influenced by treatment and suggested new predictive models of anti-TNF treatment in RA patients.
目的:通过阻断 TNF 的免疫疗法的进步显著改善了类风湿关节炎 (RA) 患者的治疗效果。尽管治疗专门针对 TNF,但免疫抑制的下游机制尚不完全清楚。本研究旨在检测针对 TNF 抑制治疗反应的生物标志物和表达特征。
方法:从 39 名女性患者收集外周血单核细胞 (PBMC),在开始抗 TNF 治疗前(第 0 天)和 3 个月后收集。该研究队列包括先前接受 MTX 治疗但反应不足的患者。根据 EULAR 标准,将治疗反应定义为反应者和非反应者,其中 23 名患者为反应者,16 名患者为非反应者。我们使用流式细胞术研究 PBMC 中的基因表达差异、外周血中细胞类型和细胞表型的比例以及血浆中蛋白质的水平。最后,我们使用机器学习模型预测对 TNF 治疗的无反应性。
结果:基线样本的基因表达分析显示,未来反应者的 EPPK1 基因表达明显更高。我们检测到治疗后基因和蛋白质的抑制,包括 T 细胞抑制剂基因 CHI3L1 及其蛋白 YKL-40 的表达抑制。基因表达结果在独立队列中得到了复制。最后,主要基于转录组数据的机器学习模型在 RA 患者中对分类抗 TNF 治疗的无反应性具有很高的预测能力。
结论:我们的综合多组学分析确定了新的预测反应的生物标志物,发现了受治疗影响的途径,并提出了新的 RA 患者抗 TNF 治疗的预测模型。
Rheumatology (Oxford). 2022-4-11
Arthritis Rheumatol. 2022-12
J Rheum Dis. 2025-7-1
Front Immunol. 2025-5-21
Front Immunol. 2018-11-9
Front Immunol. 2018-4-19
Curr Opin Immunol. 2017-6
Immunity. 2017-3-21