文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

采用多组学和机器学习技术对类风湿关节炎患者进行抗 TNF 治疗的临床应答早期预测。

Early prediction of clinical response to anti-TNF treatment using multi-omics and machine learning in rheumatoid arthritis.

机构信息

Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital.

Translational Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.

出版信息

Rheumatology (Oxford). 2022 Apr 11;61(4):1680-1689. doi: 10.1093/rheumatology/keab521.


DOI:10.1093/rheumatology/keab521
PMID:34175943
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8996791/
Abstract

OBJECTIVES: Advances in immunotherapy by blocking TNF have remarkably improved treatment outcomes for Rheumatoid arthritis (RA) patients. Although treatment specifically targets TNF, the downstream mechanisms of immune suppression are not completely understood. The aim of this study was to detect biomarkers and expression signatures of treatment response to TNF inhibition. METHODS: Peripheral blood mononuclear cells (PBMCs) from 39 female patients were collected before anti-TNF treatment initiation (day 0) and after 3 months. The study cohort included patients previously treated with MTX who failed to respond adequately. Response to treatment was defined based on the EULAR criteria and classified 23 patients as responders and 16 as non-responders. We investigated differences in gene expression in PBMCs, the proportion of cell types and cell phenotypes in peripheral blood using flow cytometry and the level of proteins in plasma. Finally, we used machine learning models to predict non-response to anti-TNF treatment. RESULTS: The gene expression analysis in baseline samples revealed notably higher expression of the gene EPPK1 in future responders. We detected the suppression of genes and proteins following treatment, including suppressed expression of the T cell inhibitor gene CHI3L1 and its protein YKL-40. The gene expression results were replicated in an independent cohort. Finally, machine learning models mainly based on transcriptomic data showed high predictive utility in classifying non-response to anti-TNF treatment in RA. CONCLUSIONS: Our integrative multi-omics analyses identified new biomarkers for the prediction of response, found pathways influenced by treatment and suggested new predictive models of anti-TNF treatment in RA patients.

摘要

目的:通过阻断 TNF 的免疫疗法的进步显著改善了类风湿关节炎 (RA) 患者的治疗效果。尽管治疗专门针对 TNF,但免疫抑制的下游机制尚不完全清楚。本研究旨在检测针对 TNF 抑制治疗反应的生物标志物和表达特征。

方法:从 39 名女性患者收集外周血单核细胞 (PBMC),在开始抗 TNF 治疗前(第 0 天)和 3 个月后收集。该研究队列包括先前接受 MTX 治疗但反应不足的患者。根据 EULAR 标准,将治疗反应定义为反应者和非反应者,其中 23 名患者为反应者,16 名患者为非反应者。我们使用流式细胞术研究 PBMC 中的基因表达差异、外周血中细胞类型和细胞表型的比例以及血浆中蛋白质的水平。最后,我们使用机器学习模型预测对 TNF 治疗的无反应性。

结果:基线样本的基因表达分析显示,未来反应者的 EPPK1 基因表达明显更高。我们检测到治疗后基因和蛋白质的抑制,包括 T 细胞抑制剂基因 CHI3L1 及其蛋白 YKL-40 的表达抑制。基因表达结果在独立队列中得到了复制。最后,主要基于转录组数据的机器学习模型在 RA 患者中对分类抗 TNF 治疗的无反应性具有很高的预测能力。

结论:我们的综合多组学分析确定了新的预测反应的生物标志物,发现了受治疗影响的途径,并提出了新的 RA 患者抗 TNF 治疗的预测模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcf1/8996791/62ea2155a2ed/keab521f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcf1/8996791/0b687f86ea27/keab521f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcf1/8996791/80feb2d582d3/keab521f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcf1/8996791/90792259f34f/keab521f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcf1/8996791/62ea2155a2ed/keab521f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcf1/8996791/0b687f86ea27/keab521f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcf1/8996791/80feb2d582d3/keab521f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcf1/8996791/90792259f34f/keab521f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcf1/8996791/62ea2155a2ed/keab521f4.jpg

相似文献

[1]
Early prediction of clinical response to anti-TNF treatment using multi-omics and machine learning in rheumatoid arthritis.

Rheumatology (Oxford). 2022-4-11

[2]
Multiomics and Machine Learning Accurately Predict Clinical Response to Adalimumab and Etanercept Therapy in Patients With Rheumatoid Arthritis.

Arthritis Rheumatol. 2021-2

[3]
Integrative Clinical, Molecular, and Computational Analysis Identify Novel Biomarkers and Differential Profiles of Anti-TNF Response in Rheumatoid Arthritis.

Front Immunol. 2021

[4]
Synovial Inflammatory Pathways Characterize Anti-TNF-Responsive Rheumatoid Arthritis Patients.

Arthritis Rheumatol. 2022-12

[5]
High serum level of haptoglobin is associated with the response of 12 weeks methotrexate therapy in recent-onset rheumatoid arthritis patients.

Int J Rheum Dis. 2016-5

[6]
Identification of gene expression biomarkers to predict clinical response to methotrexate in patients with rheumatoid arthritis.

Clin Rheumatol. 2024-1

[7]
Differential gene expression profiles may differentiate responder and nonresponder patients with rheumatoid arthritis for methotrexate (MTX) monotherapy and MTX plus tumor necrosis factor inhibitor combined therapy.

J Rheumatol. 2012-7-1

[8]
Dynamics of Type I and Type II Interferon Signature Determines Responsiveness to Anti-TNF Therapy in Rheumatoid Arthritis.

Front Immunol. 2022

[9]
Pretreatment cytokine profiles of peripheral blood mononuclear cells and serum from patients with rheumatoid arthritis in different american college of rheumatology response groups to methotrexate.

J Rheumatol. 2003-1

[10]
A Combined Transcriptomic and Genomic Analysis Identifies a Gene Signature Associated With the Response to Anti-TNF Therapy in Rheumatoid Arthritis.

Front Immunol. 2019-7-2

引用本文的文献

[1]
Serum metabolomics identifies unique inflammatory signatures to distinguish rheumatoid arthritis responders and non-responders to TNF inhibitor therapy.

Metabolomics. 2025-8-12

[2]
Deciphering differential biomarkers for anti-interleukin-6 receptor and anti-tumour necrosis factor-α treatment response in rheumatoid arthritis by multiomics analysis.

RMD Open. 2025-8-4

[3]
A robust machine learning approach to predicting remission and stratifying risk in rheumatoid arthritis patients treated with bDMARDs.

Sci Rep. 2025-7-4

[4]
Current state and future directions of basic research in rheumatoid arthritis.

J Rheum Dis. 2025-7-1

[5]
Pharmacogenomics of TNF inhibitors.

Front Immunol. 2025-5-21

[6]
Artificial intelligence in autoimmune diseases: a bibliometric exploration of the past two decades.

Front Immunol. 2025-4-22

[7]
Artificial intelligence to predict treatment response in rheumatoid arthritis and spondyloarthritis: a scoping review.

Rheumatol Int. 2025-4-7

[8]
AI-Assisted Plasmonic Diagnostics Platform for Osteoarthritis and Rheumatoid Arthritis With Biomarker Quantification Using Mathematical Models.

Small. 2025-5

[9]
Towards the Next Generation of Data-Driven Therapeutics Using Spatially Resolved Single-Cell Technologies and Generative AI.

Eur J Immunol. 2025-2

[10]
Machine Learning Prediction of Treatment Response to Biological Disease-Modifying Antirheumatic Drugs in Rheumatoid Arthritis.

J Clin Med. 2024-7-2

本文引用的文献

[1]
Multiomics and Machine Learning Accurately Predict Clinical Response to Adalimumab and Etanercept Therapy in Patients With Rheumatoid Arthritis.

Arthritis Rheumatol. 2021-2

[2]
Molecular profiling of rheumatoid arthritis patients reveals an association between innate and adaptive cell populations and response to anti-tumor necrosis factor.

Arthritis Res Ther. 2019-10-23

[3]
Interference of tumor necrosis factor inhibitor treatments on soluble tumor necrosis factor receptor 2 levels in rheumatoid arthritis.

Pract Lab Med. 2019-5-3

[4]
A transcriptomic model to predict increase in fibrous cap thickness in response to high-dose statin treatment: Validation by serial intracoronary OCT imaging.

EBioMedicine. 2019-5-22

[5]
The Key Role of TNF-TNFR2 Interactions in the Modulation of Allergic Inflammation: A Review.

Front Immunol. 2018-11-9

[6]
Tocilizumab modulates serum levels of adiponectin and chemerin in patients with rheumatoid arthritis: potential cardiovascular protective role of IL-6 inhibition.

Clin Exp Rheumatol. 2018-8-27

[7]
Role of TNF-TNF Receptor 2 Signal in Regulatory T Cells and Its Therapeutic Implications.

Front Immunol. 2018-4-19

[8]
Regulation of chitinase-3-like-1 in T cell elicits Th1 and cytotoxic responses to inhibit lung metastasis.

Nat Commun. 2018-2-5

[9]
Metabolic signatures of T-cells and macrophages in rheumatoid arthritis.

Curr Opin Immunol. 2017-6

[10]
Successful and Maladaptive T Cell Aging.

Immunity. 2017-3-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索