文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

多组学和机器学习可准确预测类风湿关节炎患者对阿达木单抗和依那西普治疗的临床反应。

Multiomics and Machine Learning Accurately Predict Clinical Response to Adalimumab and Etanercept Therapy in Patients With Rheumatoid Arthritis.

机构信息

University Medical Center Utrecht and Utrecht University, The Netherlands.

出版信息

Arthritis Rheumatol. 2021 Feb;73(2):212-222. doi: 10.1002/art.41516. Epub 2020 Dec 26.


DOI:10.1002/art.41516
PMID:32909363
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7898388/
Abstract

OBJECTIVE: To predict response to anti-tumor necrosis factor (anti-TNF) prior to treatment in patients with rheumatoid arthritis (RA), and to comprehensively understand the mechanism of how different RA patients respond differently to anti-TNF treatment. METHODS: Gene expression and/or DNA methylation profiling on peripheral blood mononuclear cells (PBMCs), monocytes, and CD4+ T cells obtained from 80 RA patients before they began either adalimumab (ADA) or etanercept (ETN) therapy was studied. After 6 months, treatment response was evaluated according to the European League Against Rheumatism criteria for disease response. Differential expression and methylation analyses were performed to identify the response-associated transcription and epigenetic signatures. Using these signatures, machine learning models were built by random forest algorithm to predict response prior to anti-TNF treatment, and were further validated by a follow-up study. RESULTS: Transcription signatures in ADA and ETN responders were divergent in PBMCs, and this phenomenon was reproduced in monocytes and CD4+ T cells. The genes up-regulated in CD4+ T cells from ADA responders were enriched in the TNF signaling pathway, while very few pathways were differential in monocytes. Differentially methylated positions (DMPs) were strongly hypermethylated in responders to ETN but not to ADA. The machine learning models for the prediction of response to ADA and ETN using differential genes reached an overall accuracy of 85.9% and 79%, respectively. The models using DMPs reached an overall accuracy of 84.7% and 88% for ADA and ETN, respectively. A follow-up study validated the high performance of these models. CONCLUSION: Our findings indicate that machine learning models based on molecular signatures accurately predict response before ADA and ETN treatment, paving the path toward personalized anti-TNF treatment.

摘要

目的:在接受抗肿瘤坏死因子(anti-TNF)治疗之前预测类风湿关节炎(RA)患者的反应,并全面了解不同 RA 患者对 anti-TNF 治疗反应不同的机制。

方法:对 80 例开始接受阿达木单抗(ADA)或依那西普(ETN)治疗的 RA 患者的外周血单核细胞(PBMCs)、单核细胞和 CD4+T 细胞进行基因表达和/或 DNA 甲基化谱分析。治疗 6 个月后,根据欧洲抗风湿病联盟(EULAR)的疾病反应标准评估治疗反应。进行差异表达和甲基化分析,以确定与反应相关的转录和表观遗传特征。使用这些特征,通过随机森林算法构建机器学习模型,在接受 anti-TNF 治疗之前预测反应,并通过后续研究进行验证。

结果:ADA 和 ETN 应答者的 PBMCs 中差异表达的转录本不同,这一现象在单核细胞和 CD4+T 细胞中得到了重现。ADA 应答者 CD4+T 细胞中上调的基因富集在 TNF 信号通路中,而单核细胞中差异很少。在 ETN 应答者中,差异甲基化位置(DMP)强烈超甲基化,但在 ADA 应答者中则不然。使用差异基因预测 ADA 和 ETN 反应的机器学习模型的总体准确性分别达到 85.9%和 79%。使用 DMP 的模型对 ADA 和 ETN 的预测总体准确性分别达到 84.7%和 88%。后续研究验证了这些模型的高性能。

结论:我们的研究结果表明,基于分子特征的机器学习模型可以准确预测 ADA 和 ETN 治疗前的反应,为个性化 anti-TNF 治疗铺平道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d299/7898388/c43176400273/ART-73-212-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d299/7898388/e9d34ba96ce3/ART-73-212-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d299/7898388/63ed1fef0aad/ART-73-212-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d299/7898388/72246455a82c/ART-73-212-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d299/7898388/9f9078912487/ART-73-212-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d299/7898388/c43176400273/ART-73-212-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d299/7898388/e9d34ba96ce3/ART-73-212-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d299/7898388/63ed1fef0aad/ART-73-212-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d299/7898388/72246455a82c/ART-73-212-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d299/7898388/9f9078912487/ART-73-212-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d299/7898388/c43176400273/ART-73-212-g005.jpg

相似文献

[1]
Multiomics and Machine Learning Accurately Predict Clinical Response to Adalimumab and Etanercept Therapy in Patients With Rheumatoid Arthritis.

Arthritis Rheumatol. 2021-2

[2]
Medication effectiveness with the use of tumor necrosis factor inhibitors among Texas Medicaid patients diagnosed with rheumatoid arthritis.

J Manag Care Spec Pharm. 2014-7

[3]
Treatment patterns and clinical outcomes in patients with rheumatoid arthritis initiating etanercept, adalimumab, or Janus kinase inhibitor as first-line therapy: results from the real-world CorEvitas RA Registry.

Arthritis Res Ther. 2023-9-9

[4]
The impact of anti-drug antibodies on drug concentrations and clinical outcomes in rheumatoid arthritis patients treated with adalimumab, etanercept, or infliximab: Results from a multinational, real-world clinical practice, non-interventional study.

PLoS One. 2017-4-27

[5]
Influence on effectiveness of early treatment with anti-TNF therapy in rheumatoid arthritis.

J Pharm Pharm Sci. 2012

[6]
Retention rates of adalimumab, etanercept and infliximab as first-line biotherapy agent for rheumatoid arthritis patients in daily practice - Auvergne experience.

Int J Rheum Dis. 2018-11

[7]
Sustained Remission in Tumor Necrosis Factor Inhibitor-treated Patients with Rheumatoid Arthritis: A Population-based Cohort Study.

J Rheumatol. 2015-5

[8]
Early prediction of clinical response to anti-TNF treatment using multi-omics and machine learning in rheumatoid arthritis.

Rheumatology (Oxford). 2022-4-11

[9]
Retention rates of adalimumab, etanercept, and infliximab as first- or second-line biotherapies for spondyloarthritis patients in daily practice in Auvergne (France).

Int J Rheum Dis. 2018-11

[10]
Novel DNA methylome biomarkers associated with adalimumab response in rheumatoid arthritis patients.

Front Immunol. 2023

引用本文的文献

[1]
The renin-angiotensin system (RAS) and arthritic diseases: therapeutic potential for RAS inhibitors.

Inflammopharmacology. 2025-8-12

[2]
Current state and future directions of basic research in rheumatoid arthritis.

J Rheum Dis. 2025-7-1

[3]
Direct single cell-type gene expression analysis in peripheral blood: novel ratio-based gene expression biomarkers using 2 novel monocyte reference genes (PSAP and CTSS) for detection of bacterial infection.

Hum Mol Genet. 2025-8-21

[4]
Emerging concepts and challenges in the development of disease-modifying osteoarthritis drugs - a more refined perspective.

Arch Pharm Res. 2025-6-28

[5]
Artificial intelligence in autoimmune diseases: a bibliometric exploration of the past two decades.

Front Immunol. 2025-4-22

[6]
Artificial intelligence to predict treatment response in rheumatoid arthritis and spondyloarthritis: a scoping review.

Rheumatol Int. 2025-4-7

[7]
Healthy and premature aging of monocytes and macrophages.

Front Immunol. 2025-3-17

[8]
Sex bias consideration in healthcare machine-learning research: a systematic review in rheumatoid arthritis.

BMJ Open. 2025-3-13

[9]
Predicting abatacept retention using machine learning.

Arthritis Res Ther. 2025-2-1

[10]
Unveiling new therapeutic horizons in rheumatoid arthritis: an In-depth exploration of circular RNAs derived from plasma exosomes.

J Orthop Surg Res. 2025-1-29

本文引用的文献

[1]
Remission and low disease activity matrix tools: results in real-world rheumatoid arthritis patients under anti-TNF therapy.

Acta Reumatol Port. 2020

[2]
A Combined Transcriptomic and Genomic Analysis Identifies a Gene Signature Associated With the Response to Anti-TNF Therapy in Rheumatoid Arthritis.

Front Immunol. 2019-7-2

[3]
RNA sequencing to predict response to TNF-α inhibitors reveals possible mechanism for nonresponse in smokers.

Expert Rev Clin Immunol. 2018-6-6

[4]
Comprehensive epigenetic landscape of rheumatoid arthritis fibroblast-like synoviocytes.

Nat Commun. 2018-5-15

[5]
DNA methylation as a marker of response in rheumatoid arthritis.

Pharmacogenomics. 2017-9

[6]
The Mechanisms Underlying Chronic Inflammation in Rheumatoid Arthritis from the Perspective of the Epigenetic Landscape.

J Immunol Res. 2016-12-28

[7]
Prediction of remission and low disease activity in disease-modifying anti-rheumatic drug-refractory patients with rheumatoid arthritis treated with golimumab.

Rheumatology (Oxford). 2016-8

[8]
Differential Methylation as a Biomarker of Response to Etanercept in Patients With Rheumatoid Arthritis.

Arthritis Rheumatol. 2016-4-21

[9]
Investigating CD11c expression as a potential genomic biomarker of response to TNF inhibitor biologics in whole blood rheumatoid arthritis samples.

Arthritis Res Ther. 2015-12-14

[10]
Synovial phenotypes in rheumatoid arthritis correlate with response to biologic therapeutics.

Arthritis Res Ther. 2014

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索