Suppr超能文献

预测 ICU 心力衰竭患者的 30 天非计划性再入院。

Prediction of unplanned 30-day readmission for ICU patients with heart failure.

机构信息

Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 W Taylor Street, MC 251, Chicago, IL, 60607, USA.

Department of Emergency Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, USA.

出版信息

BMC Med Inform Decis Mak. 2022 May 2;22(1):117. doi: 10.1186/s12911-022-01857-y.

Abstract

BACKGROUND

Intensive Care Unit (ICU) readmissions in patients with heart failure (HF) result in a significant risk of death and financial burden for patients and healthcare systems. Prediction of at-risk patients for readmission allows for targeted interventions that reduce morbidity and mortality.

METHODS AND RESULTS

We presented a process mining/deep learning approach for the prediction of unplanned 30-day readmission of ICU patients with HF. A patient's health records can be understood as a sequence of observations called event logs; used to discover a process model. Time information was extracted using the DREAM (Decay Replay Mining) algorithm. Demographic information and severity scores upon admission were then combined with the time information and fed to a neural network (NN) model to further enhance the prediction efficiency. Additionally, several machine learning (ML) algorithms were developed to be used as the baseline models for the comparison of the results.

RESULTS

By using the Medical Information Mart for Intensive Care III (MIMIC-III) dataset of 3411 ICU patients with HF, our proposed model yielded an area under the receiver operating characteristics (AUROC) of 0.930, 95% confidence interval of [0.898-0.960], the precision of 0.886, sensitivity of 0.805, accuracy of 0.841, and F-score of 0.800 which were far better than the results of the best baseline model and the existing literature.

CONCLUSIONS

The proposed approach was capable of modeling the time-related variables and incorporating the medical history of patients from prior hospital visits for prediction. Thus, our approach significantly improved the outcome prediction compared to that of other ML-based models and health calculators.

摘要

背景

心力衰竭(HF)患者入住重症监护病房(ICU)后再次入院会导致患者死亡风险显著增加,并给患者和医疗系统带来沉重的经济负担。预测有再次入院风险的患者可以采取有针对性的干预措施,从而降低发病率和死亡率。

方法和结果

我们提出了一种流程挖掘/深度学习方法,用于预测 HF 患者 ICU 非计划性 30 天再入院。患者的健康记录可以理解为一系列称为事件日志的观察结果;用于发现流程模型。使用 DREAM(衰减重放挖掘)算法提取时间信息。然后将入院时的人口统计学信息和严重程度评分与时间信息结合起来,并输入到神经网络(NN)模型中,以进一步提高预测效率。此外,还开发了几种机器学习(ML)算法作为基线模型,用于比较结果。

结果

通过使用 3411 例 HF 患者的医疗信息重症监护 III 号(MIMIC-III)数据集,我们提出的模型获得了接收器工作特征(AUROC)曲线下面积为 0.930,95%置信区间为[0.898-0.960],精度为 0.886,灵敏度为 0.805,准确性为 0.841,F1 得分为 0.800,均优于最佳基线模型和现有文献的结果。

结论

该方法能够对与时间相关的变量进行建模,并将患者之前住院的医疗史纳入预测中。因此,与其他基于 ML 的模型和健康计算器相比,我们的方法显著提高了预测结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea23/9063206/2c98ae679a1e/12911_2022_1857_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验