Suppr超能文献

深度学习方法预测膝骨关节炎的疼痛进展。

Deep learning approach to predict pain progression in knee osteoarthritis.

机构信息

Department of Radiology, University of Wisconsin, 1111 Highland Avenue, Madison, WI, 53705-2275, USA.

Department of Electrical and Computer Engineering, University of Wisconsin, Madison, WI, USA.

出版信息

Skeletal Radiol. 2022 Feb;51(2):363-373. doi: 10.1007/s00256-021-03773-0. Epub 2021 Apr 9.

Abstract

OBJECTIVE

To develop and evaluate deep learning (DL) risk assessment models for predicting pain progression in subjects with or at risk of knee osteoarthritis (OA).

MATERIALS AND METHODS

The incidence and progression cohorts of the Osteoarthritis Initiative, a multi-center longitudinal study involving 9348 knees in 4674 subjects with or at risk of knee OA that began in 2004 and is ongoing, were used to conduct this retrospective analysis. A subset of knees without and with pain progression (defined as a 9-point or greater increase in pain score between baseline and two or more follow-up time points over the first 48 months) was randomly stratified into training (4200 knees with a mean age of 61.0 years and 60% female) and hold-out testing (500 knees with a mean age of 60.8 years and 60% female) datasets. A DL model was developed to predict pain progression using baseline knee radiographs. An artificial neural network was used to develop a traditional risk assessment model to predict pain progression using demographic, clinical, and radiographic risk factors. A combined model was developed to combine demographic, clinical, and radiographic risk factors with DL analysis of baseline knee radiographs. Area under the curve (AUC) analysis was performed using the hold-out testing dataset to evaluate model performance.

RESULTS

The traditional model had an AUC of 0.692 (66.9% sensitivity and 64.1% specificity). The DL model had an AUC of 0.770 (76.7% sensitivity and 70.5% specificity), which was significantly higher (p < 0.001) than the traditional model. The combined model had an AUC of 0.807 (72.3% sensitivity and 80.9% specificity), which was significantly higher (p < 0.05) than the traditional and DL models.

CONCLUSIONS

DL models using baseline knee radiographs had higher diagnostic performance for predicting pain progression than traditional models using demographic, clinical, and radiographic risk factors.

摘要

目的

开发和评估深度学习(DL)风险评估模型,以预测有或处于膝关节骨关节炎(OA)风险的患者疼痛进展。

材料与方法

本回顾性分析使用了 2004 年开始并持续进行的多中心纵向研究——骨关节炎倡议的发病和进展队列,该研究共涉及 4674 名有或处于膝关节 OA 风险的患者的 9348 个膝关节。将无疼痛进展(定义为基线和前 48 个月内的两个或多个随访时间点之间疼痛评分增加 9 分或以上)和有疼痛进展(定义为基线和前 48 个月内的两个或多个随访时间点之间疼痛评分增加 9 分或以上)的膝关节亚组随机分层为训练(4200 个膝关节,平均年龄 61.0 岁,女性占 60%)和保留测试(500 个膝关节,平均年龄 60.8 岁,女性占 60%)数据集。使用基线膝关节 X 线片,开发了一种 DL 模型来预测疼痛进展。使用人工神经网络开发了一种传统风险评估模型,该模型使用人口统计学、临床和影像学危险因素来预测疼痛进展。开发了一个综合模型,将人口统计学、临床和影像学危险因素与基线膝关节 X 线片的 DL 分析相结合。使用保留测试数据集进行曲线下面积(AUC)分析,以评估模型性能。

结果

传统模型的 AUC 为 0.692(66.9%的敏感性和 64.1%的特异性)。DL 模型的 AUC 为 0.770(76.7%的敏感性和 70.5%的特异性),明显高于传统模型(p<0.001)。综合模型的 AUC 为 0.807(72.3%的敏感性和 80.9%的特异性),明显高于传统模型和 DL 模型(p<0.05)。

结论

使用基线膝关节 X 线片的 DL 模型在预测疼痛进展方面的诊断性能优于使用人口统计学、临床和影像学危险因素的传统模型。

相似文献

1
Deep learning approach to predict pain progression in knee osteoarthritis.深度学习方法预测膝骨关节炎的疼痛进展。
Skeletal Radiol. 2022 Feb;51(2):363-373. doi: 10.1007/s00256-021-03773-0. Epub 2021 Apr 9.

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验