Suppr超能文献

实时预测短时间尺度的认知工作负荷波动。

Real-time prediction of short-timescale fluctuations in cognitive workload.

机构信息

Department of Psychology, University of Amsterdam, PO Box 15906, 1001 NK, Amsterdam, The Netherlands.

Department of Psychology, University of Tasmania, Sandy Bay, Australia.

出版信息

Cogn Res Princ Implic. 2021 Apr 9;6(1):30. doi: 10.1186/s41235-021-00289-y.

Abstract

Human operators often experience large fluctuations in cognitive workload over seconds timescales that can lead to sub-optimal performance, ranging from overload to neglect. Adaptive automation could potentially address this issue, but to do so it needs to be aware of real-time changes in operators' spare cognitive capacity, so it can provide help in times of peak demand and take advantage of troughs to elicit operator engagement. However, it is unclear whether rapid changes in task demands are reflected in similarly rapid fluctuations in spare capacity, and if so what aspects of responses to those demands are predictive of the current level of spare capacity. We used the ISO standard detection response task (DRT) to measure cognitive workload approximately every 4 s in a demanding task requiring monitoring and refueling of a fleet of simulated unmanned aerial vehicles (UAVs). We showed that the DRT provided a valid measure that can detect differences in workload due to changes in the number of UAVs. We used cross-validation to assess whether measures related to task performance immediately preceding the DRT could predict detection performance as a proxy for cognitive workload. Although the simple occurrence of task events had weak predictive ability, composite measures that tapped operators' situational awareness with respect to fuel levels were much more effective. We conclude that cognitive workload does vary rapidly as a function of recent task events, and that real-time predictive models of operators' cognitive workload provide a potential avenue for automation to adapt without an ongoing need for intrusive workload measurements.

摘要

人类操作人员经常在数秒的时间内经历认知工作量的大幅波动,这可能导致次优表现,从过载到忽视。自适应自动化有可能解决这个问题,但要做到这一点,它需要意识到操作人员剩余认知能力的实时变化,以便在需求高峰期提供帮助,并利用低谷来引起操作人员的参与。然而,目前尚不清楚任务需求的快速变化是否反映在剩余能力的类似快速波动中,如果是这样,那么对这些需求的反应的哪些方面可以预测当前的剩余能力水平。我们使用 ISO 标准检测响应任务(DRT)来测量大约每 4 秒在一个需要监控和加油一队模拟无人机(UAV)的要求很高的任务中的认知工作量。我们表明,DRT 提供了一个有效的测量方法,可以检测由于 UAV 数量变化而导致的工作负荷差异。我们使用交叉验证来评估 DRT 之前的任务绩效相关措施是否可以预测检测绩效作为认知工作量的代理。虽然任务事件的简单发生具有较弱的预测能力,但涉及到操作人员对燃料水平的情境意识的综合措施则更有效。我们的结论是,认知工作量确实会随着最近的任务事件而快速变化,并且对操作人员认知工作量的实时预测模型为自动化提供了一种适应的潜在途径,而无需持续进行侵入性的工作量测量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cef/8035388/acacebcb1513/41235_2021_289_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验