Suppr超能文献

在心理学中选择预测而不是解释:来自机器学习的教训。

Choosing Prediction Over Explanation in Psychology: Lessons From Machine Learning.

机构信息

University of Texas at Austin.

出版信息

Perspect Psychol Sci. 2017 Nov;12(6):1100-1122. doi: 10.1177/1745691617693393. Epub 2017 Aug 25.

Abstract

Psychology has historically been concerned, first and foremost, with explaining the causal mechanisms that give rise to behavior. Randomized, tightly controlled experiments are enshrined as the gold standard of psychological research, and there are endless investigations of the various mediating and moderating variables that govern various behaviors. We argue that psychology's near-total focus on explaining the causes of behavior has led much of the field to be populated by research programs that provide intricate theories of psychological mechanism but that have little (or unknown) ability to predict future behaviors with any appreciable accuracy. We propose that principles and techniques from the field of machine learning can help psychology become a more predictive science. We review some of the fundamental concepts and tools of machine learning and point out examples where these concepts have been used to conduct interesting and important psychological research that focuses on predictive research questions. We suggest that an increased focus on prediction, rather than explanation, can ultimately lead us to greater understanding of behavior.

摘要

心理学历史上首先关注的是解释导致行为的因果机制。随机、严格控制的实验被奉为心理学研究的金标准,人们对各种中介和调节变量进行了无休止的研究,这些变量控制着各种行为。我们认为,心理学几乎完全专注于解释行为的原因,这导致该领域的大部分研究项目都提供了关于心理机制的复杂理论,但几乎没有(或未知)能力以任何可衡量的准确性预测未来的行为。我们提出,机器学习领域的原理和技术可以帮助心理学成为一门更具预测性的科学。我们回顾了机器学习的一些基本概念和工具,并指出了这些概念在哪些地方被用于进行有趣且重要的关注预测性研究问题的心理学研究。我们认为,更多地关注预测而非解释最终可以使我们更好地理解行为。

相似文献

1
Choosing Prediction Over Explanation in Psychology: Lessons From Machine Learning.
Perspect Psychol Sci. 2017 Nov;12(6):1100-1122. doi: 10.1177/1745691617693393. Epub 2017 Aug 25.
2
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
3
How Can Big Data Science Transform the Psychological Sciences?
Span J Psychol. 2020 Nov 5;23:e44. doi: 10.1017/SJP.2020.45.
4
Prediction of Online Psychological Help-Seeking Behavior During the COVID-19 Pandemic: An Interpretable Machine Learning Method.
Front Public Health. 2022 Mar 3;10:814366. doi: 10.3389/fpubh.2022.814366. eCollection 2022.
5
Machine Learning and Psychological Research: The Unexplored Effect of Measurement.
Perspect Psychol Sci. 2020 May;15(3):809-816. doi: 10.1177/1745691620902467. Epub 2020 Apr 29.
6
What can qualitative psychology contribute to psychological knowledge?
Psychol Methods. 2019 Dec;24(6):796-804. doi: 10.1037/met0000218. Epub 2019 Apr 22.
7
Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
Artif Intell Med. 2019 Jul;98:109-134. doi: 10.1016/j.artmed.2019.07.007. Epub 2019 Jul 26.
8
Rethinking Giftedness and Gifted Education: A Proposed Direction Forward Based on Psychological Science.
Psychol Sci Public Interest. 2011 Jan;12(1):3-54. doi: 10.1177/1529100611418056.
9
What Is the Accuracy of Three Different Machine Learning Techniques to Predict Clinical Outcomes After Shoulder Arthroplasty?
Clin Orthop Relat Res. 2020 Oct;478(10):2351-2363. doi: 10.1097/CORR.0000000000001263.
10
A direct comparison of theory-driven and machine learning prediction of suicide: A meta-analysis.
PLoS One. 2021 Apr 12;16(4):e0249833. doi: 10.1371/journal.pone.0249833. eCollection 2021.

引用本文的文献

1
What values best distinguish the world's cultures? The machine learning-based cultural values inventory.
PNAS Nexus. 2025 Aug 26;4(8):pgaf229. doi: 10.1093/pnasnexus/pgaf229. eCollection 2025 Aug.
4
Weak and unstable prediction of personality from the structural connectome.
Imaging Neurosci (Camb). 2025 Jan 3;3. doi: 10.1162/imag_a_00416. eCollection 2025.
5
The Voxelwise Encoding Model framework: A tutorial introduction to fitting encoding models to fMRI data.
Imaging Neurosci (Camb). 2025 May 9;3. doi: 10.1162/imag_a_00575. eCollection 2025.
6
Time-varying functional connectivity as Wishart processes.
Imaging Neurosci (Camb). 2024 Jun 5;2. doi: 10.1162/imag_a_00184. eCollection 2024.
8
Predicting human decisions with behavioural theories and machine learning.
Nat Hum Behav. 2025 Jul 21. doi: 10.1038/s41562-025-02267-6.
9
Can I trust this paper?
Psychon Bull Rev. 2025 Jul 16. doi: 10.3758/s13423-025-02740-3.

本文引用的文献

1
Experiments with More Than One Random Factor: Designs, Analytic Models, and Statistical Power.
Annu Rev Psychol. 2017 Jan 3;68:601-625. doi: 10.1146/annurev-psych-122414-033702. Epub 2016 Sep 28.
2
Genome-wide analysis of over 106 000 individuals identifies 9 neuroticism-associated loci.
Mol Psychiatry. 2016 Nov;21(11):1644. doi: 10.1038/mp.2016.177. Epub 2016 Sep 13.
3
Statistically Controlling for Confounding Constructs Is Harder than You Think.
PLoS One. 2016 Mar 31;11(3):e0152719. doi: 10.1371/journal.pone.0152719. eCollection 2016.
4
Using Lasso for Predictor Selection and to Assuage Overfitting: A Method Long Overlooked in Behavioral Sciences.
Multivariate Behav Res. 2015;50(5):471-84. doi: 10.1080/00273171.2015.1036965.
5
PSYCHOLOGY. Estimating the reproducibility of psychological science.
Science. 2015 Aug 28;349(6251):aac4716. doi: 10.1126/science.aac4716.
7
The Smartphone Psychology Manifesto.
Perspect Psychol Sci. 2012 May;7(3):221-37. doi: 10.1177/1745691612441215.
8
There Is Nothing So Theoretical as a Good Method.
Perspect Psychol Sci. 2012 Mar;7(2):99-108. doi: 10.1177/1745691611434210. Epub 2012 Mar 9.
9
Why Science Is Not Necessarily Self-Correcting.
Perspect Psychol Sci. 2012 Nov;7(6):645-54. doi: 10.1177/1745691612464056.
10
An Agenda for Purely Confirmatory Research.
Perspect Psychol Sci. 2012 Nov;7(6):632-8. doi: 10.1177/1745691612463078.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验