Suppr超能文献

单细胞 RNA-Seq 数据的降维处理。

Dimensionality Reduction of Single-Cell RNA-Seq Data.

机构信息

Department of Applied Mathematics, Yale University, New Haven, CT, USA.

出版信息

Methods Mol Biol. 2021;2284:331-342. doi: 10.1007/978-1-0716-1307-8_18.

Abstract

Dimensionality reduction is a crucial step in essentially every single-cell RNA-sequencing (scRNA-seq) analysis. In this chapter, we describe the typical dimensionality reduction workflow that is used for scRNA-seq datasets, specifically highlighting the roles of principal component analysis, t-distributed stochastic neighborhood embedding, and uniform manifold approximation and projection in this setting. We particularly emphasize efficient computation; the software implementations used in this chapter can scale to datasets with millions of cells.

摘要

降维是单细胞 RNA 测序(scRNA-seq)分析中至关重要的一步。在本章中,我们描述了用于 scRNA-seq 数据集的典型降维工作流程,特别强调了主成分分析、t 分布随机邻域嵌入和一致流形逼近与投影在这种情况下的作用。我们特别强调了高效计算;本章中使用的软件实现可以扩展到具有数百万个细胞的数据集。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验