Department of Applied Mathematics, Yale University, New Haven, CT, USA.
Methods Mol Biol. 2021;2284:331-342. doi: 10.1007/978-1-0716-1307-8_18.
Dimensionality reduction is a crucial step in essentially every single-cell RNA-sequencing (scRNA-seq) analysis. In this chapter, we describe the typical dimensionality reduction workflow that is used for scRNA-seq datasets, specifically highlighting the roles of principal component analysis, t-distributed stochastic neighborhood embedding, and uniform manifold approximation and projection in this setting. We particularly emphasize efficient computation; the software implementations used in this chapter can scale to datasets with millions of cells.
降维是单细胞 RNA 测序(scRNA-seq)分析中至关重要的一步。在本章中,我们描述了用于 scRNA-seq 数据集的典型降维工作流程,特别强调了主成分分析、t 分布随机邻域嵌入和一致流形逼近与投影在这种情况下的作用。我们特别强调了高效计算;本章中使用的软件实现可以扩展到具有数百万个细胞的数据集。