Lin Peijie, Troup Michael, Ho Joshua W K
Victor Chang Cardiac Research Institute, Darlinghurst, 2010, NSW, Australia.
St Vincent's Clinical School, University of New South Wales, Darlinghurst, 2010, NSW, Australia.
Genome Biol. 2017 Mar 28;18(1):59. doi: 10.1186/s13059-017-1188-0.
Most existing dimensionality reduction and clustering packages for single-cell RNA-seq (scRNA-seq) data deal with dropouts by heavy modeling and computational machinery. Here, we introduce CIDR (Clustering through Imputation and Dimensionality Reduction), an ultrafast algorithm that uses a novel yet very simple implicit imputation approach to alleviate the impact of dropouts in scRNA-seq data in a principled manner. Using a range of simulated and real data, we show that CIDR improves the standard principal component analysis and outperforms the state-of-the-art methods, namely t-SNE, ZIFA, and RaceID, in terms of clustering accuracy. CIDR typically completes within seconds when processing a data set of hundreds of cells and minutes for a data set of thousands of cells. CIDR can be downloaded at https://github.com/VCCRI/CIDR .
大多数现有的用于单细胞RNA测序(scRNA-seq)数据的降维和聚类软件包,通过大量建模和计算机制来处理数据缺失值。在此,我们介绍CIDR(通过插补和降维进行聚类),这是一种超快速算法,它使用一种新颖但非常简单的隐式插补方法,以原则性的方式减轻scRNA-seq数据中缺失值的影响。通过一系列模拟数据和真实数据,我们表明CIDR改进了标准主成分分析,并且在聚类准确性方面优于当前的先进方法,即t-SNE、ZIFA和RaceID。当处理数百个细胞的数据集时,CIDR通常在数秒内完成,而处理数千个细胞的数据集时则需数分钟。可在https://github.com/VCCRI/CIDR 下载CIDR。