Suppr超能文献

CIDR:通过对单细胞RNA测序数据进行插补实现超快速且准确的聚类

CIDR: Ultrafast and accurate clustering through imputation for single-cell RNA-seq data.

作者信息

Lin Peijie, Troup Michael, Ho Joshua W K

机构信息

Victor Chang Cardiac Research Institute, Darlinghurst, 2010, NSW, Australia.

St Vincent's Clinical School, University of New South Wales, Darlinghurst, 2010, NSW, Australia.

出版信息

Genome Biol. 2017 Mar 28;18(1):59. doi: 10.1186/s13059-017-1188-0.

Abstract

Most existing dimensionality reduction and clustering packages for single-cell RNA-seq (scRNA-seq) data deal with dropouts by heavy modeling and computational machinery. Here, we introduce CIDR (Clustering through Imputation and Dimensionality Reduction), an ultrafast algorithm that uses a novel yet very simple implicit imputation approach to alleviate the impact of dropouts in scRNA-seq data in a principled manner. Using a range of simulated and real data, we show that CIDR improves the standard principal component analysis and outperforms the state-of-the-art methods, namely t-SNE, ZIFA, and RaceID, in terms of clustering accuracy. CIDR typically completes within seconds when processing a data set of hundreds of cells and minutes for a data set of thousands of cells. CIDR can be downloaded at https://github.com/VCCRI/CIDR .

摘要

大多数现有的用于单细胞RNA测序(scRNA-seq)数据的降维和聚类软件包,通过大量建模和计算机制来处理数据缺失值。在此,我们介绍CIDR(通过插补和降维进行聚类),这是一种超快速算法,它使用一种新颖但非常简单的隐式插补方法,以原则性的方式减轻scRNA-seq数据中缺失值的影响。通过一系列模拟数据和真实数据,我们表明CIDR改进了标准主成分分析,并且在聚类准确性方面优于当前的先进方法,即t-SNE、ZIFA和RaceID。当处理数百个细胞的数据集时,CIDR通常在数秒内完成,而处理数千个细胞的数据集时则需数分钟。可在https://github.com/VCCRI/CIDR 下载CIDR。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3318/5371246/e1b21d10cd29/13059_2017_1188_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验