Department of Pharmacy, Princess Alexandra Hospital, Brisbane, Queensland, 4102, Australia.
School of Pharmacy, The University of Queensland, Brisbane, Queensland, 4102, Australia.
Br J Clin Pharmacol. 2021 Nov;87(11):4124-4139. doi: 10.1111/bcp.14852. Epub 2021 May 14.
To identify and critically appraise studies of prediction models, developed using machine learning (ML) methods, for determining the optimal dosing of unfractionated heparin (UFH).
Embase, PubMed, CINAHL, Web of Science, International Pharmaceutical Abstracts and IEEE Xplore databases were searched from inception to 31 January 2020 to identify relevant studies using key search terms synonymous with artificial intelligence or ML, 'prediction', 'dose', 'activated partial thromboplastin time (aPTT)' and 'UFH.' Studies had to have used ML methods for developing models that predicted optimal dose of UFH or target therapeutic aPTT levels in the hospital setting. The CHARMS Checklist was used to assess quality and risk of bias of included studies.
Of 8393 retrieved abstracts, 61 underwent full text review and eight studies met inclusion criteria. Four studies described models for predicting aPTT, three studies described models predicting optimal dose of heparin during dialysis and one study described a model that used surrogate outcomes of clotting and bleeding to predict a therapeutic aPTT. Studies varied widely in reporting of study participants, feature characterisation and selection, handling of missing data, sample size calculations and the intended clinical application of the model. Only one study conducted an external validation and no studies evaluated model impacts in clinical practice.
Studies of ML models for UFH dosing are few and none report a model ready for routine clinical use. Existing studies are limited by low methodological quality, inadequate reporting of study factors and absence of external validation and impact analysis.
识别和批判性评价使用机器学习(ML)方法开发的预测模型研究,以确定非 分 子 肝 素(UFH)的最佳剂量。
从建库到 2020 年 1 月 31 日,使用同义词搜索词(如人工智能或 ML、“预测”、“剂量”、“活 化 部 分 凝 血 活 酶 时 间(aPTT)”和“UFH”)在 Embase、PubMed、CINAHL、Web of Science、国际药学文摘和 IEEE Xplore 数据库中搜索相关研究。研究必须使用 ML 方法开发模型,预测 UFH 的最佳剂量或医院环境中的目标治疗性 aPTT 水平。CHARMS 清单用于评估纳入研究的质量和偏倚风险。
在 8393 篇检索摘要中,有 61 篇进行了全文审查,有 8 篇研究符合纳入标准。四项研究描述了预测 aPTT 的模型,三项研究描述了预测透析期间肝素最佳剂量的模型,一项研究描述了使用凝血和出血替代结局预测治疗性 aPTT 的模型。研究在报告研究参与者、特征描述和选择、缺失数据处理、样本量计算以及模型的预期临床应用方面差异很大。只有一项研究进行了外部验证,没有研究评估模型在临床实践中的影响。
关于 UFH 剂量的 ML 模型研究很少,没有一项研究报告了可用于常规临床使用的模型。现有的研究受到方法学质量低、研究因素报告不足以及缺乏外部验证和影响分析的限制。