Research in Dosimetric Application, Belgian Nuclear Research Centre, Mol, Belgium.
Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands.
J Nucl Med. 2022 Jan;63(1):100-107. doi: 10.2967/jnumed.121.262122. Epub 2021 Apr 9.
Our rationale was to build a refined dosimetry model for Lu-DOTATATE in vivo experiments enabling the correlation of absorbed dose with double-strand break (DSB) induction and cell death. Somatostatin receptor type 2 expression of NCI-H69 xenografted mice, injected with Lu-DOTATATE, was imaged at 0, 2, 5, and 11 d. This expression was used as input to reconstruct realistic 3-dimensional heterogeneous activity distributions and tissue geometries of both cancer and heathy cells. The resulting volumetric absorbed dose rate distributions were calculated using the GATE (Geant4 Application for Tomographic Emission) Monte Carlo code and compared with homogeneous dose rate distributions. The absorbed dose (0-2 d) on micrometer-scale sections was correlated with DSB induction, measured by γH2AX foci. Moreover, the absorbed dose on larger millimeter-scale sections delivered over the whole treatment (0-14 d) was correlated to the modeled in vivo survival to determine the radiosensitivity parameters α and β for comparison with experimental data (cell death assay, volume response) and external-beam radiotherapy. The DNA-damage repair half-life T and proliferation doubling time T were obtained by fitting the DSB and tumor volume data over time. A linear correlation with a slope of 0.0223 DSB/cell mGy between the absorbed dose and the number of DSBs per cell has been established. The heterogeneous dose distributions differed significantly from the homogeneous dose distributions, with their corresponding average S values diverging at 11 d by up to 58%. No significant difference between modeled in vivo survival was observed in the first 5 d when using heterogeneous and uniform dose distributions. The radiosensitivity parameter analysis for the in vivo survival correlation indicated that the minimal effective dose rates for cell kill was 13.72 and 7.40 mGy/h, with an α of 0.14 and 0.264 Gy, respectively, and an α/β of 100 Gy; decreasing the α/β led to a decrease in the minimal effective dose rate for cell kill. Within the linear quadratic model, the best matching in vivo survival correlation (α = 0.1 Gy, α/β = 100 Gy, T = 60 h, T = 14.5 d) indicated a relative biological effectiveness of 0.4 in comparison to external-beam radiotherapy. Our results demonstrated that accurate dosimetric modeling is crucial to establishing dose-response correlations enabling optimization of treatment protocols.
我们的基本原理是建立 Lu-DOTATATE 在体内实验中的精细剂量学模型,使吸收剂量与双链断裂 (DSB) 诱导和细胞死亡相关联。用 Lu-DOTATATE 注射的 NCI-H69 异种移植小鼠的生长抑素受体 2 表达在 0、2、5 和 11 天进行成像。将这种表达用作重建癌症和健康细胞的真实三维异质活性分布和组织几何形状的输入。使用 GATE(Geant4 应用于断层发射)蒙特卡罗代码计算得到的体积吸收剂量率分布,并与均匀剂量率分布进行比较。在 0-2 天的微观尺度切片上的吸收剂量与通过 γH2AX 焦点测量的 DSB 诱导相关联。此外,在整个治疗期间(0-14 天)在较大的毫米级切片上给予的吸收剂量与模型化的体内生存相关联,以确定α和β的放射敏感性参数,以便与实验数据(细胞死亡测定、体积反应)和外部束放射治疗进行比较。通过拟合随时间推移的 DSB 和肿瘤体积数据获得 DNA 损伤修复半衰期 T 和增殖倍增时间 T。已经建立了吸收剂量与每个细胞的 DSB 数之间的线性关系,斜率为 0.0223 DSB/细胞 mGy。与均匀剂量分布相比,不均匀剂量分布差异显著,相应的平均 S 值在 11 天相差高达 58%。当使用不均匀和均匀剂量分布时,在最初的 5 天内,模型化的体内生存没有观察到显著差异。对于体内生存相关性的放射敏感性参数分析表明,细胞杀伤的最小有效剂量率分别为 13.72 和 7.40 mGy/h,α 值分别为 0.14 和 0.264 Gy,α/β 值分别为 100 Gy;降低α/β 会降低细胞杀伤的最小有效剂量率。在线性二次模型中,与外部束放射治疗相比,最佳匹配的体内生存相关性(α = 0.1 Gy,α/β = 100 Gy,T = 60 h,T = 14.5 d)表明相对生物效应为 0.4。我们的结果表明,准确的剂量学建模对于建立剂量反应相关性至关重要,这使得能够优化治疗方案。