Salas-Ramirez Maikol, Maigne Lydia, Fois Giovanna, Scherthan Harry, Lassmann Michael, Eberlein Uta
Department of Nuclear Medicine, University of Würzburg, Würzburg, Germany.
Laboratoire de Physique de Clermont, University of Clermont Auvergne, Clermont, France.
Z Med Phys. 2023 Aug 18. doi: 10.1016/j.zemedi.2023.07.007.
This study describes a method to validate a radiation transport model that quantifies the number of DNA double-strand breaks (DSB) produced in the lymphocyte nucleus by internal ex vivo irradiation of whole blood with the radionuclides Y, Tc, I, I, Lu, Ra, and Ac in a test vial using the GATE/Geant4 code at the macroscopic level and the Geant4-DNA code at the microscopic level.
The simulation at the macroscopic level reproduces an 8 mL cylindrical water-equivalent medium contained in a vial that mimics the geometry for internal ex vivo blood irradiation. The lymphocytes were simulated as spheres of 3.75 µm radius randomly distributed, with a concentration of 125 spheres/mL. A phase-space actor was attached to each sphere to register all the entering particles. The simulation at the microscopic level for each radionuclide was performed using the Geant4-DNA tool kit, which includes the clustering example centered on a density-based spatial clustering of applications with noise (DBSCAN) algorithm. The irradiation source was constructed by generating a single phase space from the sum of all phase spaces. The lymphocyte nucleus was defined as a water sphere of a 3.1 µm radius. The absorbed dose coefficients for lymphocyte nuclei (d) were calculated and compared with macroscopic whole blood absorbed dose coefficients (d). The DBSCAN algorithm was used to calculate the number of DSBs. Lastly, the number of DSB∙cell∙mGy (simulation) was compared with the number of radiation-induced foci per cell and absorbed dose (RIF∙cell∙mGy) provided by experimental data for gamma and beta emitting radionuclides. For alpha emitters, d and the number of α-tracks∙100 cell∙mGy and DBSs∙µm were calculated using experiment-based thresholds for the α-track lengths and DBSs/track values. The results were compared with the results of an ex vivo study with Ra.
The d values differed from the d values by -1.0% (Y), -5.2% (Tc), -22.3% (I), 0.35% (I), 2.4% (Lu), -5.6% (Ra) and -6.1% (Ac). The number of DSB∙cell∙mGy for each radionuclide was 0.015 DSB∙cell∙mGy (Y), 0.012 DSB∙cell∙mGy (Tc), 0.014DSB∙cell∙mGy (I), 0.012 DSB∙cell∙mGy (I), and 0.016 DSB∙cell∙mGy (Lu). These values agree very well with experimental data. The number of α-tracks∙100 cells∙mGy for Ra and Ac where 0.144 α-tracks∙100 cells∙mGy and 0.151 α-tracks∙100 cells∙mGy, respectively. These values agree very well with experimental data. Moreover, the linear density of DSBs per micrometer α-track length were 11.13 ± 0.04 DSB/µm and 10.86 ± 0.06 DSB/µm for Ra and Ac, respectively.
This study describes a model to simulate the DNA DSB damage in lymphocyte nuclei validated by experimental data obtained from internal ex vivo blood irradiation with radionuclides frequently used in diagnostic and therapeutic procedures in nuclear medicine.
本研究描述了一种验证辐射传输模型的方法,该模型可量化在测试瓶中用放射性核素Y、Tc、I、I、Lu、Ra和Ac对全血进行体外照射时,淋巴细胞核中产生的DNA双链断裂(DSB)数量,在宏观层面使用GATE/Geant4代码,在微观层面使用Geant4-DNA代码。
宏观层面的模拟再现了一个小瓶中8毫升圆柱形水等效介质,该介质模拟了体外血液照射的几何形状。淋巴细胞被模拟为半径3.75微米的球体,随机分布,浓度为125个球体/毫升。在每个球体上附加一个相空间作用体,以记录所有进入的粒子。使用Geant4-DNA工具包对每个放射性核素进行微观层面的模拟,该工具包包括基于密度的带有噪声的空间聚类应用(DBSCAN)算法的聚类示例。通过从所有相空间的总和生成单个相空间来构建照射源。淋巴细胞核被定义为半径3.1微米的水球。计算淋巴细胞核的吸收剂量系数(d),并与宏观全血吸收剂量系数(d)进行比较。使用DBSCAN算法计算DSB的数量。最后,将每个细胞每毫戈瑞的DSB数量(模拟值)与γ和β发射放射性核素的实验数据提供的每个细胞的辐射诱导灶数量和吸收剂量(RIF∙细胞∙毫戈瑞)进行比较。对于α发射体,使用基于实验的α径迹长度和DSB/径迹值阈值计算d以及每100个细胞每毫戈瑞的α径迹数量和每微米的DSB数量。将结果与用Ra进行的体外研究结果进行比较。
d值与d值的差异分别为-1.0%(Y)、-5.2%(Tc)、-22.3%(I)、0.35%(I)、2.4%(Lu)、-5.6%(Ra)和-6.1%(Ac)。每个放射性核素的每个细胞每毫戈瑞的DSB数量分别为0.015 DSB∙细胞∙毫戈瑞(Y)、0.012 DSB∙细胞∙毫戈瑞(Tc)、0.014 DSB∙细胞∙毫戈瑞(I)、0.012 DSB∙细胞∙毫戈瑞(I)和0.016 DSB∙细胞∙毫戈瑞(Lu)。这些值与实验数据非常吻合。对于Ra和Ac,每100个细胞每毫戈瑞的α径迹数量分别为0.144 α径迹∙100个细胞∙毫戈瑞和0.151 α径迹∙一百个细胞∙毫戈瑞。这些值与实验数据非常吻合。此外,对于Ra和Ac,每微米α径迹长度的DSB线性密度分别为11.13±0.04 DSB/微米和10.86±0.06 DSB/微米。
本研究描述了一种模拟淋巴细胞核中DNA DSB损伤的模型,该模型通过从核医学诊断和治疗程序中常用的放射性核素对全血进行体外照射获得的实验数据进行了验证。