Suppr超能文献

时空推荐引擎在疟疾防控中的应用。

A spatiotemporal recommendation engine for malaria control.

机构信息

Department of Statistics, North Carolina State University, 2311 Stinson Dr. Raleigh, NC 27695-8203, USA.

出版信息

Biostatistics. 2022 Jul 18;23(3):1023-1038. doi: 10.1093/biostatistics/kxab010.

Abstract

Malaria is an infectious disease affecting a large population across the world, and interventions need to be efficiently applied to reduce the burden of malaria. We develop a framework to help policy-makers decide how to allocate limited resources in realtime for malaria control. We formalize a policy for the resource allocation as a sequence of decisions, one per intervention decision, that map up-to-date disease related information to a resource allocation. An optimal policy must control the spread of the disease while being interpretable and viewed as equitable to stakeholders. We construct an interpretable class of resource allocation policies that can accommodate allocation of resources residing in a continuous domain and combine a hierarchical Bayesian spatiotemporal model for disease transmission with a policy-search algorithm to estimate an optimal policy for resource allocation within the pre-specified class. The estimated optimal policy under the proposed framework improves the cumulative long-term outcome compared with naive approaches in both simulation experiments and application to malaria interventions in the Democratic Republic of the Congo.

摘要

疟疾是一种影响全球大量人口的传染病,需要有效地采取干预措施来减轻疟疾负担。我们开发了一个框架,帮助决策者实时决定如何分配有限的资源用于疟疾控制。我们将资源分配的政策形式化为一系列决策,每个决策对应一种干预措施,将最新的疾病相关信息映射到资源分配上。最优政策必须控制疾病的传播,同时具有可解释性,并被利益相关者视为公平。我们构建了一类可解释的资源分配政策,这些政策可以适应位于连续域中的资源分配,并将疾病传播的分层贝叶斯时空模型与策略搜索算法相结合,以在预定义的类内估计资源分配的最优策略。在所提出的框架下,所估计的最优策略在模拟实验和刚果民主共和国疟疾干预措施的应用中均优于盲目方法,改善了累积的长期结果。

相似文献

1
A spatiotemporal recommendation engine for malaria control.时空推荐引擎在疟疾防控中的应用。
Biostatistics. 2022 Jul 18;23(3):1023-1038. doi: 10.1093/biostatistics/kxab010.
8
Spatiotemporal Bayesian networks for malaria prediction.时空贝叶斯网络在疟疾预测中的应用。
Artif Intell Med. 2018 Jan;84:127-138. doi: 10.1016/j.artmed.2017.12.002. Epub 2017 Dec 11.

本文引用的文献

2
Interpretable Dynamic Treatment Regimes.可解释的动态治疗方案
J Am Stat Assoc. 2018;113(524):1541-1549. doi: 10.1080/01621459.2017.1345743. Epub 2018 Nov 14.
5
Personalized Dose Finding Using Outcome Weighted Learning.使用结果加权学习的个性化剂量探索
J Am Stat Assoc. 2016;111(516):1509-1521. doi: 10.1080/01621459.2016.1148611. Epub 2017 Jan 4.
7
Tree-based methods for individualized treatment regimes.用于个性化治疗方案的基于树的方法。
Biometrika. 2015;102(3):501-514. doi: 10.1093/biomet/asv028. Epub 2015 Jul 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验