Department of Statistics, North Carolina State University, 2311 Stinson Dr. Raleigh, NC 27695-8203, USA.
Biostatistics. 2022 Jul 18;23(3):1023-1038. doi: 10.1093/biostatistics/kxab010.
Malaria is an infectious disease affecting a large population across the world, and interventions need to be efficiently applied to reduce the burden of malaria. We develop a framework to help policy-makers decide how to allocate limited resources in realtime for malaria control. We formalize a policy for the resource allocation as a sequence of decisions, one per intervention decision, that map up-to-date disease related information to a resource allocation. An optimal policy must control the spread of the disease while being interpretable and viewed as equitable to stakeholders. We construct an interpretable class of resource allocation policies that can accommodate allocation of resources residing in a continuous domain and combine a hierarchical Bayesian spatiotemporal model for disease transmission with a policy-search algorithm to estimate an optimal policy for resource allocation within the pre-specified class. The estimated optimal policy under the proposed framework improves the cumulative long-term outcome compared with naive approaches in both simulation experiments and application to malaria interventions in the Democratic Republic of the Congo.
疟疾是一种影响全球大量人口的传染病,需要有效地采取干预措施来减轻疟疾负担。我们开发了一个框架,帮助决策者实时决定如何分配有限的资源用于疟疾控制。我们将资源分配的政策形式化为一系列决策,每个决策对应一种干预措施,将最新的疾病相关信息映射到资源分配上。最优政策必须控制疾病的传播,同时具有可解释性,并被利益相关者视为公平。我们构建了一类可解释的资源分配政策,这些政策可以适应位于连续域中的资源分配,并将疾病传播的分层贝叶斯时空模型与策略搜索算法相结合,以在预定义的类内估计资源分配的最优策略。在所提出的框架下,所估计的最优策略在模拟实验和刚果民主共和国疟疾干预措施的应用中均优于盲目方法,改善了累积的长期结果。