Suppr超能文献

使用结果加权学习的个性化剂量探索

Personalized Dose Finding Using Outcome Weighted Learning.

作者信息

Chen Guanhua, Zeng Donglin, Kosorok Michael R

机构信息

Assistant Professor, Department of Biostatistics, Vanderbilt University, Nashville, TN 37203.

Professor, Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599.

出版信息

J Am Stat Assoc. 2016;111(516):1509-1521. doi: 10.1080/01621459.2016.1148611. Epub 2017 Jan 4.

Abstract

In dose-finding clinical trials, it is becoming increasingly important to account for individual level heterogeneity while searching for optimal doses to ensure an optimal individualized dose rule (IDR) maximizes the expected beneficial clinical outcome for each individual. In this paper, we advocate a randomized trial design where candidate dose levels assigned to study subjects are randomly chosen from a continuous distribution within a safe range. To estimate the optimal IDR using such data, we propose an outcome weighted learning method based on a nonconvex loss function, which can be solved efficiently using a difference of convex functions algorithm. The consistency and convergence rate for the estimated IDR are derived, and its small-sample performance is evaluated via simulation studies. We demonstrate that the proposed method outperforms competing approaches. Finally, we illustrate this method using data from a cohort study for Warfarin (an anti-thrombotic drug) dosing.

摘要

在剂量探索性临床试验中,在寻找最佳剂量时考虑个体水平的异质性变得越来越重要,以确保最佳的个体化剂量规则(IDR)能使每个个体的预期有益临床结果最大化。在本文中,我们提倡一种随机试验设计,即分配给研究对象的候选剂量水平是从安全范围内的连续分布中随机选择的。为了使用此类数据估计最佳IDR,我们提出了一种基于非凸损失函数的结果加权学习方法,该方法可以使用凸函数差算法有效地求解。推导了估计IDR的一致性和收敛速度,并通过模拟研究评估了其小样本性能。我们证明了所提出的方法优于其他竞争方法。最后,我们使用来自一项华法林(一种抗血栓药物)剂量的队列研究的数据来说明该方法。

相似文献

1
Personalized Dose Finding Using Outcome Weighted Learning.使用结果加权学习的个性化剂量探索
J Am Stat Assoc. 2016;111(516):1509-1521. doi: 10.1080/01621459.2016.1148611. Epub 2017 Jan 4.
3
Estimating individualized treatment rules with risk constraint.通过风险约束估计个体化治疗规则。
Biometrics. 2020 Dec;76(4):1310-1318. doi: 10.1111/biom.13232. Epub 2020 Feb 18.
4
On Robustness of Individualized Decision Rules.论个体化决策规则的稳健性。
J Am Stat Assoc. 2023;118(543):2143-2157. doi: 10.1080/01621459.2022.2038180. Epub 2022 Apr 11.
7
Residual Weighted Learning for Estimating Individualized Treatment Rules.用于估计个体化治疗规则的残差加权学习
J Am Stat Assoc. 2017;112(517):169-187. doi: 10.1080/01621459.2015.1093947. Epub 2017 May 3.
9
Estimating individualized treatment rules for ordinal treatments.估计有序治疗的个体化治疗规则。
Biometrics. 2018 Sep;74(3):924-933. doi: 10.1111/biom.12865. Epub 2018 Mar 13.

引用本文的文献

本文引用的文献

1
Residual Weighted Learning for Estimating Individualized Treatment Rules.用于估计个体化治疗规则的残差加权学习
J Am Stat Assoc. 2017;112(517):169-187. doi: 10.1080/01621459.2015.1093947. Epub 2017 May 3.
6
Set-valued dynamic treatment regimes for competing outcomes.用于竞争结局的集值动态治疗方案。
Biometrics. 2014 Mar;70(1):53-61. doi: 10.1111/biom.12132. Epub 2014 Jan 8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验