Chen Guanhua, Zeng Donglin, Kosorok Michael R
Assistant Professor, Department of Biostatistics, Vanderbilt University, Nashville, TN 37203.
Professor, Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599.
J Am Stat Assoc. 2016;111(516):1509-1521. doi: 10.1080/01621459.2016.1148611. Epub 2017 Jan 4.
In dose-finding clinical trials, it is becoming increasingly important to account for individual level heterogeneity while searching for optimal doses to ensure an optimal individualized dose rule (IDR) maximizes the expected beneficial clinical outcome for each individual. In this paper, we advocate a randomized trial design where candidate dose levels assigned to study subjects are randomly chosen from a continuous distribution within a safe range. To estimate the optimal IDR using such data, we propose an outcome weighted learning method based on a nonconvex loss function, which can be solved efficiently using a difference of convex functions algorithm. The consistency and convergence rate for the estimated IDR are derived, and its small-sample performance is evaluated via simulation studies. We demonstrate that the proposed method outperforms competing approaches. Finally, we illustrate this method using data from a cohort study for Warfarin (an anti-thrombotic drug) dosing.
在剂量探索性临床试验中,在寻找最佳剂量时考虑个体水平的异质性变得越来越重要,以确保最佳的个体化剂量规则(IDR)能使每个个体的预期有益临床结果最大化。在本文中,我们提倡一种随机试验设计,即分配给研究对象的候选剂量水平是从安全范围内的连续分布中随机选择的。为了使用此类数据估计最佳IDR,我们提出了一种基于非凸损失函数的结果加权学习方法,该方法可以使用凸函数差算法有效地求解。推导了估计IDR的一致性和收敛速度,并通过模拟研究评估了其小样本性能。我们证明了所提出的方法优于其他竞争方法。最后,我们使用来自一项华法林(一种抗血栓药物)剂量的队列研究的数据来说明该方法。