Suppr超能文献

贝叶斯非参数策略搜索及其在牙周复查间隔中的应用

Bayesian Nonparametric Policy Search with Application to Periodontal Recall Intervals.

作者信息

Guan Qian, Reich Brian J, Laber Eric B, Bandyopadhyay Dipankar

机构信息

Department of Statistics, North Carolina State University, Raleigh, North Carolina.

Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia.

出版信息

J Am Stat Assoc. 2020;115(531):1066-1078. doi: 10.1080/01621459.2019.1660169. Epub 2019 Oct 9.

Abstract

Tooth loss from periodontal disease is a major public health burden in the United States. Standard clinical practice is to recommend a dental visit every six months; however, this practice is not evidence-based, and poor dental outcomes and increasing dental insurance premiums indicate room for improvement. We consider a tailored approach that recommends recall time based on patient characteristics and medical history to minimize disease progression without increasing resource expenditures. We formalize this method as a dynamic treatment regime which comprises a sequence of decisions, one per stage of intervention, that follow a decision rule which maps current patient information to a recommendation for their next visit time. The dynamics of periodontal health, visit frequency, and patient compliance are complex, yet the estimated optimal regime must be interpretable to domain experts if it is to be integrated into clinical practice. We combine non-parametric Bayesian dynamics modeling with policy-search algorithms to estimate the optimal dynamic treatment regime within an interpretable class of regimes. Both simulation experiments and application to a rich database of electronic dental records from the HealthPartners HMO shows that our proposed method leads to better dental health without increasing the average recommended recall time relative to competing methods.

摘要

在美国,牙周病导致的牙齿脱落是一项重大的公共卫生负担。标准临床实践是建议每六个月进行一次牙科检查;然而,这种做法并非基于证据,而且不良的牙科治疗结果和不断上涨的牙科保险费用表明仍有改进空间。我们考虑一种量身定制的方法,即根据患者特征和病史推荐复诊时间,以在不增加资源支出的情况下尽量减少疾病进展。我们将这种方法形式化为一种动态治疗方案,该方案由一系列决策组成,每个干预阶段一个决策,遵循一个决策规则,该规则将当前患者信息映射到对其下次就诊时间的建议。牙周健康、就诊频率和患者依从性的动态情况很复杂,然而,如果要将估计的最优方案整合到临床实践中,它必须能被领域专家理解。我们将非参数贝叶斯动力学建模与策略搜索算法相结合,以在可解释的方案类别中估计最优动态治疗方案。模拟实验以及对来自健康合作伙伴健康维护组织(HealthPartners HMO)的丰富电子牙科记录数据库的应用均表明,相对于其他竞争方法,我们提出的方法在不增加平均推荐复诊时间的情况下能带来更好的牙齿健康状况。

相似文献

3
Interpretable Dynamic Treatment Regimes.可解释的动态治疗方案
J Am Stat Assoc. 2018;113(524):1541-1549. doi: 10.1080/01621459.2017.1345743. Epub 2018 Nov 14.
4
A spatiotemporal recommendation engine for malaria control.时空推荐引擎在疟疾防控中的应用。
Biostatistics. 2022 Jul 18;23(3):1023-1038. doi: 10.1093/biostatistics/kxab010.
6
Routine scale and polish for periodontal health in adults.成人牙周健康的常规洗牙和抛光。
Cochrane Database Syst Rev. 2018 Dec 27;12(12):CD004625. doi: 10.1002/14651858.CD004625.pub5.
7
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
8
Recall intervals for oral health in primary care patients.基层医疗患者口腔健康的召回间隔。
Cochrane Database Syst Rev. 2013 Dec 19(12):CD004346. doi: 10.1002/14651858.CD004346.pub4.

本文引用的文献

1
Functional feature construction for individualized treatment regimes.个性化治疗方案的功能特征构建
J Am Stat Assoc. 2017;113(523):1219-1227. doi: 10.1080/01621459.2017.1321545. Epub 2017 Jun 26.
8
Tree-based methods for individualized treatment regimes.用于个性化治疗方案的基于树的方法。
Biometrika. 2015;102(3):501-514. doi: 10.1093/biomet/asv028. Epub 2015 Jul 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验