Suppr超能文献

多智能体强化学习在自动驾驶车辆交通流管理中的应用。

Multi-Agent Reinforcement Learning for Traffic Flow Management of Autonomous Vehicles.

机构信息

Pakistan Institute of Engineering and Applied Sciences, Islamabad 44000, Pakistan.

PIEAS Artificial Intelligence Center (PAIC), Islamabad 44000, Pakistan.

出版信息

Sensors (Basel). 2023 Feb 21;23(5):2373. doi: 10.3390/s23052373.

Abstract

Intelligent traffic management systems have become one of the main applications of Intelligent Transportation Systems (ITS). There is a growing interest in Reinforcement Learning (RL) based control methods in ITS applications such as autonomous driving and traffic management solutions. Deep learning helps in approximating substantially complex nonlinear functions from complicated data sets and tackling complex control issues. In this paper, we propose an approach based on Multi-Agent Reinforcement Learning (MARL) and smart routing to improve the flow of autonomous vehicles on road networks. We evaluate Multi-Agent Advantage Actor-Critic (MA2C) and Independent Advantage Actor-Critical (IA2C), recently suggested Multi-Agent Reinforcement Learning techniques with smart routing for traffic signal optimization to determine its potential. We investigate the framework offered by non-Markov decision processes, enabling a more in-depth understanding of the algorithms. We conduct a critical analysis to observe the robustness and effectiveness of the method. The method's efficacy and reliability are demonstrated by simulations using SUMO, a software modeling tool for traffic simulations. We used a road network that contains seven intersections. Our findings show that MA2C, when trained on pseudo-random vehicle flows, is a viable methodology that outperforms competing techniques.

摘要

智能交通管理系统已成为智能交通系统 (ITS) 的主要应用之一。强化学习 (RL) 控制方法在自动驾驶和交通管理解决方案等 ITS 应用中越来越受到关注。深度学习有助于从复杂的数据集逼近实质性复杂的非线性函数,并解决复杂的控制问题。在本文中,我们提出了一种基于多智能体强化学习 (MARL) 和智能路由的方法,以提高道路网络上自动驾驶车辆的流量。我们评估了多智能体优势演员评论家 (MA2C) 和独立优势演员评论家 (IA2C),这两种最近提出的多智能体强化学习技术都带有智能路由,用于交通信号优化,以确定其潜力。我们研究了非马尔可夫决策过程提供的框架,从而可以更深入地了解算法。我们进行了批判性分析,以观察该方法的稳健性和有效性。该方法使用 SUMO 进行模拟,SUMO 是一种用于交通模拟的软件建模工具,通过模拟证明了其有效性和可靠性。我们使用包含七个交叉口的道路网络。我们的研究结果表明,在伪随机车辆流量上进行训练的 MA2C 是一种可行的方法,优于竞争技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe8e/10007156/876cedd5e6d4/sensors-23-02373-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验