Suppr超能文献

KARRIKIN INSENSITIVE2 依赖性信号通路的主要成分在苔类植物 Marchantia polymorpha 中保守。

Major components of the KARRIKIN INSENSITIVE2-dependent signaling pathway are conserved in the liverwort Marchantia polymorpha.

机构信息

Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8577, Japan.

Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.

出版信息

Plant Cell. 2021 Aug 13;33(7):2395-2411. doi: 10.1093/plcell/koab106.

Abstract

KARRIKIN INSENSITIVE2 (KAI2) was first identified as a receptor of karrikins, smoke-derived germination stimulants. KAI2 is also considered a receptor of an unidentified endogenous molecule called the KAI2 ligand. Upon KAI2 activation, signals are transmitted through the degradation of D53/SMXL proteins via MAX2-dependent ubiquitination. Although components in the KAI2-dependent signaling pathway, namely MpKAI2A and MpKAI2B, MpMAX2, and MpSMXL, exist in the genome of the liverwort Marchantia polymorpha, their functions remain unknown. Here, we show that early thallus growth is retarded and gemma dormancy in the dark is suppressed in Mpkai2a and Mpmax2 loss-of-function mutants. These defects are counteracted in Mpkai2a Mpsmxl and Mpmax2 Mpsmxl double mutants indicating that MpKAI2A, MpMAX2, and MpSMXL act in the same genetic pathway. Introduction of MpSMXLd53, in which a domain required for degradation is mutated, into wild-type plants mimicks Mpkai2a and Mpmax2 plants. In addition, the detection of citrine fluorescence in Nicotiana benthamiana cells transiently expressing a SMXL-Citrine fusion protein requires treatment with MG132, a proteasome inhibitor. These findings imply that MpSMXL is subjected to degradation, and that the degradation of MpSMXL is crucial for MpKAI2A-dependent signaling in M. polymorpha. Therefore, we claim that the basic mechanisms in the KAI2-dependent signaling pathway are conserved in M. polymorpha.

摘要

KARRIKIN INSENSITIVE2 (KAI2) 最初被鉴定为卡瑞林的受体,卡瑞林是一种源自烟雾的萌发刺激物。KAI2 也被认为是一种未识别的内源性分子的受体,称为 KAI2 配体。KAI2 激活后,信号通过 MAX2 依赖性泛素化降解 D53/SMXL 蛋白传递。尽管 KAI2 依赖性信号通路中的成分,即 MpKAI2A 和 MpKAI2B、MpMAX2 和 MpSMXL,存在于地钱基因组中,但它们的功能仍不清楚。在这里,我们表明早期叶状体生长受到阻碍,并且黑暗中休眠的孢子体在 Mpkai2a 和 Mpmax2 功能丧失突变体中受到抑制。这些缺陷在 Mpkai2a Mpsmxl 和 Mpmax2 Mpsmxl 双突变体中得到逆转,表明 MpKAI2A、MpMAX2 和 MpSMXL 作用于相同的遗传途径。将突变体降解所需结构域缺失的 MpSMXLd53 导入野生型植物中,可模拟 Mpkai2a 和 Mpmax2 植物。此外,在瞬时表达 SMXL-Citrine 融合蛋白的 Nicotiana benthamiana 细胞中检测到的Citrine 荧光需要用蛋白酶体抑制剂 MG132 处理。这些发现表明 MpSMXL 受到降解,并且 MpSMXL 的降解对于 M. polymorpha 中 MpKAI2A 依赖性信号转导至关重要。因此,我们声称 KAI2 依赖性信号通路中的基本机制在 M. polymorpha 中是保守的。

相似文献

2
DIENELACTONE HYDROLASE LIKE PROTEIN1 negatively regulates the KAI2-ligand pathway in Marchantia polymorpha.
Curr Biol. 2023 Aug 21;33(16):3505-3513.e5. doi: 10.1016/j.cub.2023.06.083. Epub 2023 Jul 21.
3
Control of vegetative reproduction in Marchantia polymorpha by the KAI2-ligand signaling pathway.
Curr Biol. 2023 Apr 10;33(7):1196-1210.e4. doi: 10.1016/j.cub.2023.02.022. Epub 2023 Mar 1.
5
Smoke-derived karrikin perception by the α/β-hydrolase KAI2 from Arabidopsis.
Proc Natl Acad Sci U S A. 2013 May 14;110(20):8284-9. doi: 10.1073/pnas.1306265110. Epub 2013 Apr 23.
6
The origins and mechanisms of karrikin signalling.
Curr Opin Plant Biol. 2013 Oct;16(5):667-73. doi: 10.1016/j.pbi.2013.07.005. Epub 2013 Aug 14.
7
The karrikin receptor KAI2 promotes drought resistance in Arabidopsis thaliana.
PLoS Genet. 2017 Nov 13;13(11):e1007076. doi: 10.1371/journal.pgen.1007076. eCollection 2017 Nov.
10
The Karrikin Receptor Karrikin Insensitive2 Positively Regulates Heat Stress Tolerance in Arabidopsis thaliana.
Plant Cell Physiol. 2023 Jan 30;63(12):1914-1926. doi: 10.1093/pcp/pcac112.

引用本文的文献

2
The Multifaceted Impact of Karrikin Signaling in Plants.
Int J Mol Sci. 2025 Mar 19;26(6):2775. doi: 10.3390/ijms26062775.
5
Identification of osmotic stress resistance mediated by in apple.
Front Plant Sci. 2024 Dec 5;15:1467034. doi: 10.3389/fpls.2024.1467034. eCollection 2024.
7
and genes regulate release, germination and growth of gemma in .
Front Plant Sci. 2024 Jun 25;15:1358745. doi: 10.3389/fpls.2024.1358745. eCollection 2024.
8
The landscape of transcription factor promoter activity during vegetative development in Marchantia.
Plant Cell. 2024 May 29;36(6):2140-2159. doi: 10.1093/plcell/koae053.
9
10
Karrikin signalling: impacts on plant development and abiotic stress tolerance.
J Exp Bot. 2024 Feb 12;75(4):1174-1186. doi: 10.1093/jxb/erad476.

本文引用的文献

2
Transcriptional regulation of strigolactone signalling in Arabidopsis.
Nature. 2020 Jul;583(7815):277-281. doi: 10.1038/s41586-020-2382-x. Epub 2020 Jun 11.
5
Evolution of Plant Hormone Response Pathways.
Annu Rev Plant Biol. 2020 Apr 29;71:327-353. doi: 10.1146/annurev-arplant-050718-100309. Epub 2020 Feb 4.
6
A conserved regulatory mechanism mediates the convergent evolution of plant shoot lateral organs.
PLoS Biol. 2019 Dec 9;17(12):e3000560. doi: 10.1371/journal.pbio.3000560. eCollection 2019 Dec.
8
SMAX1/SMXL2 regulate root and root hair development downstream of KAI2-mediated signalling in Arabidopsis.
PLoS Genet. 2019 Aug 29;15(8):e1008327. doi: 10.1371/journal.pgen.1008327. eCollection 2019 Aug.
9
Fellowship of the rings: a saga of strigolactones and other small signals.
New Phytol. 2020 Jan;225(2):621-636. doi: 10.1111/nph.16135. Epub 2019 Sep 17.
10
Structural Basis of Karrikin and Non-natural Strigolactone Perception in Physcomitrella patens.
Cell Rep. 2019 Jan 22;26(4):855-865.e5. doi: 10.1016/j.celrep.2019.01.003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验