Xu Zhongkui
College of Music and Dance, Henan Normal University, Xinxiang, China.
Front Psychol. 2022 May 26;13:843427. doi: 10.3389/fpsyg.2022.843427. eCollection 2022.
In order to study the application of the deep learning (DL) method in music genre recognition, this study introduces the music feature extraction method and the deep belief network (DBN) in DL and proposes the parameter extraction feature and the recognition classification method of an ethnic music genre based on the DBN with five kinds of ethnic musical instruments as the experimental objects. A national musical instrument recognition and classification network structure based on the DBN is proposed. On this basis, a music library classification retrieval learning platform has been established and tested. The results show that, when the DBN only contains one hidden layer and the number of neural nodes in the hidden layer is 117, the basic convergence accuracy is approximately 98%. The first hidden layer has the greatest impact on the prediction results. When the input sample feature size is one-third of the number of nodes in the first hidden layer, the network performance is basically convergent. The DBN is the best way for softmax to identify and classify national musical instruments, and the accuracy rate is 99.2%. Therefore, the proposed DL algorithm performs better in identifying music genres.
为了研究深度学习(DL)方法在音乐流派识别中的应用,本研究介绍了DL中的音乐特征提取方法和深度信念网络(DBN),并提出了以五种民族乐器为实验对象的基于DBN的民族音乐流派参数提取特征及识别分类方法。提出了一种基于DBN的民族乐器识别与分类网络结构。在此基础上,建立并测试了一个音乐库分类检索学习平台。结果表明,当DBN仅包含一个隐藏层且隐藏层中的神经节点数为117时,基本收敛准确率约为98%。第一个隐藏层对预测结果的影响最大。当输入样本特征大小为第一个隐藏层中节点数的三分之一时,网络性能基本收敛。DBN是softmax识别和分类民族乐器的最佳方式,准确率为99.2%。因此,所提出的DL算法在音乐流派识别中表现更好。