Zhu Yingying, Sabuncu Mert R
Schools of ECE and BME, Cornell University, Ithaca, USA.
Graphs Biomed Image Anal Integr Med Imaging Nonimaging Modalities (2018). 2018 Sep;11044:57-65. doi: 10.1007/978-3-030-00689-1_6. Epub 2018 Sep 16.
In this work, we consider the problem of predicting the course of a progressive disease, such as cancer or Alzheimer's. Progressive diseases often start with mild symptoms that might precede a diagnosis, and each patient follows their own trajectory. Patient trajectories exhibit wild variability, which can be associated with many factors such as geno-type, age, or sex. An additional layer of complexity is that, in real life, the amount and type of data available for each patient can differ significantly. For example, for one patient we might have no prior history, whereas for another patient we might have detailed clinical assessments obtained at multiple prior time-points. This paper presents a probabilistic model that can handle multiple modalities (including images and clinical assessments) and variable patient histories with irregular timings and missing entries, to predict clinical scores at future time-points. We use a sigmoidal function to model latent disease progression, which gives rise to clinical observations in our generative model. We implemented an approximate Bayesian inference strategy on the proposed model to estimate the parameters on data from a large population of subjects. Furthermore, the Bayesian framework enables the model to automatically fine-tune its predictions based on historical observations that might be available on the test subject. We applied our method to a longitudinal Alzheimer's disease dataset with more than 3,000 subjects [1] with comparisons against several benchmarks.
在这项工作中,我们考虑预测诸如癌症或阿尔茨海默病等进行性疾病病程的问题。进行性疾病通常始于可能先于诊断的轻微症状,并且每个患者都有其自身的病程轨迹。患者病程轨迹表现出极大的变异性,这可能与许多因素相关,如基因型、年龄或性别。另一个复杂层面在于,在现实生活中,每个患者可获得的数据量和数据类型可能存在显著差异。例如,对于一名患者我们可能没有既往病史,而对于另一名患者我们可能有在多个先前时间点获得的详细临床评估。本文提出了一种概率模型,该模型能够处理多种模态(包括图像和临床评估)以及具有不规则时间安排和缺失条目的可变患者病史,以预测未来时间点的临床评分。我们使用一个S形函数对潜在疾病进展进行建模,这在我们的生成模型中产生临床观察结果。我们在所提出的模型上实施了一种近似贝叶斯推理策略,以根据来自大量受试者的数据估计参数。此外,贝叶斯框架使模型能够基于测试对象可能有的历史观察结果自动微调其预测。我们将我们的方法应用于一个有超过3000名受试者的纵向阿尔茨海默病数据集[1],并与几个基准进行了比较。