Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA.
Pyramid Technical Consultants, Inc, Boston, MA, 02421, USA.
Med Phys. 2021 Jul;48(7):3948-3957. doi: 10.1002/mp.14882. Epub 2021 Jun 3.
Ultra-high dose rate (FLASH) radiotherapy has become a popular research topic with the potential to reduce normal tissue toxicities without losing the benefit of tumor control. The development of FLASH proton pencil beam scanning (PBS) delivery requires accurate dosimetry despite high beam currents with correspondingly high ionization densities in the monitoring chamber. In this study, we characterized a newly designed high-resolution position sensing transmission ionization chamber with a purpose-built multichannel electrometer for both conventional and FLASH dose rate proton radiotherapy.
The dosimetry and positioning accuracies of the ion chamber were fully characterized with a clinical scanning beam. On the FLASH proton beamline, the cyclotron output current reached up to 350 nA with a maximum energy of 226.2 MeV, with 210 ± 3 nA nozzle pencil beam current. The ion recombination effect was characterized under various bias voltages up to 1000 V and different beam intensities. The charge collected by the transmission ion chamber was compared with the measurements from a Faraday cup.
Cross-calibrated with an Advanced Markus chamber (PTW, Freiburg, Germany) in a uniform PBS proton beam field at clinical beam setting, the ion chamber calibration was 38.0 and 36.7 GyE·mm /nC at 100 and 226.2 MeV, respectively. The ion recombination effect increased with larger cyclotron current at lower bias voltage while remaining ≤0.5 ± 0.5% with ≥200 V of bias voltage. Above 200 V, the normalized ion chamber readings demonstrated good linearity with the mass stopping power in air for both clinical and FLASH beam intensities. The spot positioning accuracy was measured to be 0.10 ± 0.08 mm in two orthogonal directions.
We characterized a transmission ion chamber system under both conventional and FLASH beam current densities and demonstrated its suitability for use as a proton pencil beam dose and spot position delivery monitor under FLASH dose rate conditions.
超高剂量率(FLASH)放射治疗已成为一个热门研究课题,它有可能在不降低肿瘤控制效果的情况下降低正常组织毒性。FLASH 质子笔束扫描(PBS)输送的发展需要准确的剂量测量,尽管束流电流很高,但监测腔中的离子密度也相应很高。在这项研究中,我们使用专门设计的多通道静电计对一种新设计的高分辨率位置感应传输电离室进行了特性描述,该电离室可用于常规和 FLASH 剂量率质子放射治疗。
使用临床扫描束对离子室的剂量测量和定位精度进行了全面的特性描述。在 FLASH 质子束线上,回旋加速器的输出电流高达 350 nA,最大能量为 226.2 MeV,喷嘴铅笔束电流为 210 ± 3 nA。在各种偏置电压高达 1000 V 和不同束流强度下,对离子复合效应进行了特性描述。传输电离室收集的电荷量与法拉第杯的测量结果进行了比较。
在临床束设置下的均匀 PBS 质子束场中,与 Advanced Markus 室(PTW,弗莱堡,德国)进行交叉校准,离子室校准值分别为 100 和 226.2 MeV 时的 38.0 和 36.7 GyE·mm /nC。离子复合效应随着较小偏置电压下较大的回旋加速器电流而增加,而在 ≥200 V 的偏置电压下保持 ≤0.5 ± 0.5%。在 200 V 以上,对于临床和 FLASH 束强度,归一化离子室读数与空气中的质量阻止本领表现出良好的线性关系。在两个正交方向上,光斑定位精度测量值为 0.10 ± 0.08 mm。
我们对传统和 FLASH 束电流密度下的传输离子室系统进行了特性描述,并证明了它在 FLASH 剂量率条件下作为质子铅笔束剂量和光斑位置输送监测器的适用性。