Ziemba Marc, Schumacher Leon, Hess Christian
Eduard Zintl Institute of Inorganic and Physical Chemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany.
J Phys Chem Lett. 2021 Apr 22;12(15):3749-3754. doi: 10.1021/acs.jpclett.1c00892. Epub 2021 Apr 12.
Indium oxide (InO) has emerged as a highly active catalyst for methanol synthesis by CO hydrogenation. In this work we elucidate the reduction behavior and oxygen dynamics of cubic InO nanoparticles by Raman and UV-vis spectra in combination with density functional theory (DFT) calculations. We demonstrate that application of UV and visible Raman spectroscopy enables, first, a complete description of the InO vibrational structure fully consistent with theory and, second, the first theoretical identification of the nature of defect-related bands in reduced InO. Combining these findings with quasi XPS and UV-vis measurements allows the temperature-dependent structural dynamics of InO to be unraveled. While the surface of a particle is not in equilibrium with its bulk at room temperature, oxygen exchange between the bulk and the surface occurs at elevated temperatures, leading to an oxidation of the surface and an increase in oxygen defects in the bulk. Our results demonstrate the potential of combining different spectroscopic methods with DFT to elucidate the complex redox behavior of InO nanoparticles.
氧化铟(InO)已成为通过CO加氢合成甲醇的高活性催化剂。在这项工作中,我们通过拉曼光谱和紫外可见光谱结合密度泛函理论(DFT)计算,阐明了立方InO纳米颗粒的还原行为和氧动力学。我们证明,紫外和可见拉曼光谱的应用,首先能够完整描述与理论完全一致的InO振动结构,其次能够首次从理论上确定还原InO中与缺陷相关的谱带的性质。将这些发现与准XPS和紫外可见测量相结合,可以揭示InO随温度变化的结构动力学。虽然在室温下颗粒表面与其本体处于非平衡状态,但在高温下本体与表面之间会发生氧交换,导致表面氧化和本体中氧缺陷增加。我们的结果证明了将不同光谱方法与DFT相结合以阐明InO纳米颗粒复杂氧化还原行为的潜力。