Tsoukalou Athanasia, Abdala Paula M, Stoian Dragos, Huang Xing, Willinger Marc-Georg, Fedorov Alexey, Müller Christoph R
Department of Mechanical and Process Engineering , ETH Zürich , Zürich CH 8092 , Switzerland.
The Swiss-Norwegian Beamlines (SNBL) at ESRF , BP 220, Grenoble 38043 , France.
J Am Chem Soc. 2019 Aug 28;141(34):13497-13505. doi: 10.1021/jacs.9b04873. Epub 2019 Aug 1.
We report an operando examination of a model nanocrystalline InO catalyst for methanol synthesis via CO hydrogenation (300 °C, 20 bar) by combining X-ray absorption spectroscopy (XAS), X-ray powder diffraction (XRD), and in situ transmission electron microscopy (TEM). Three distinct catalytic regimes are identified during CO hydrogenation: activation, stable performance, and deactivation. The structural evolution of InO nanoparticles (NPs) with time on stream (TOS) followed by XANES-EXAFS-XRD associates the activation stage with a minor decrease of the In-O coordination number and a partial reduction of InO due to the formation of oxygen vacancy sites (i.e., InO). As the reaction proceeds, a reductive amorphization of InO NPs takes place, characterized by decreasing In-O and In-In coordination numbers and intensities of the InO Bragg peaks. A multivariate analysis of the XANES data confirms the formation of InO and, with TOS, metallic In. Notably, the appearance of molten In coincides with the onset of catalyst deactivation. This phase transition is also visualized by in situ TEM, acquired under reactive conditions at 800 mbar pressure. In situ TEM revealed an electron beam assisted transformation of InO nanoparticles into a dynamic structure in which crystalline and amorphous phases coexist and continuously interconvert. The regeneration of the deactivated In/InO catalyst by reoxidation was critically assessed revealing that the spent catalyst can be reoxidized only partially in a CO atmosphere or air yielding an average crystallite size of the resultant InO that is approximately an order of magnitude larger than the initial one.
我们通过结合X射线吸收光谱(XAS)、X射线粉末衍射(XRD)和原位透射电子显微镜(TEM),对用于通过CO加氢合成甲醇(300°C,20巴)的模型纳米晶InO催化剂进行了原位研究。在CO加氢过程中确定了三种不同的催化状态:活化、稳定性能和失活。通过XANES-EXAFS-XRD跟踪InO纳米颗粒(NPs)随反应时间(TOS)的结构演变,将活化阶段与In-O配位数的轻微降低以及由于氧空位位点(即InO)的形成导致的InO部分还原相关联。随着反应的进行,InO NPs发生还原非晶化,其特征是In-O和In-In配位数以及InO布拉格峰强度降低。对XANES数据的多变量分析证实了InO以及随着TOS的增加金属In的形成。值得注意的是,熔融In的出现与催化剂失活的开始相吻合。这种相变也通过在800毫巴压力的反应条件下获得的原位TEM可视化。原位TEM揭示了InO纳米颗粒在电子束辅助下转变为一种动态结构,其中结晶相和非晶相共存并不断相互转化。对失活的In/InO催化剂通过再氧化进行再生进行了严格评估,结果表明,废催化剂在CO气氛或空气中只能部分再氧化,生成的InO的平均微晶尺寸比初始尺寸大约大一个数量级。