Suppr超能文献

与激活相关的可塑性用于感受野发展的尖峰时间依赖。

Spike-Timing-Dependent Plasticity With Activation-Dependent Scaling for Receptive Fields Development.

出版信息

IEEE Trans Neural Netw Learn Syst. 2022 Oct;33(10):5215-5228. doi: 10.1109/TNNLS.2021.3069683. Epub 2022 Oct 5.

Abstract

Spike-timing-dependent plasticity (STDP) is one of the most popular and deeply biologically motivated forms of unsupervised Hebbian-type learning. In this article, we propose a variant of STDP extended by an additional activation-dependent scale factor. The consequent learning rule is an efficient algorithm, which is simple to implement and applicable to spiking neural networks (SNNs). It is demonstrated that the proposed plasticity mechanism combined with competitive learning can serve as an effective mechanism for the unsupervised development of receptive fields (RFs). Furthermore, the relationship between synaptic scaling and lateral inhibition is explored in the context of the successful development of RFs. Specifically, we demonstrate that maintaining a high level of synaptic scaling followed by its rapid increase is crucial for the development of neuronal mechanisms of selectivity. The strength of the proposed solution is assessed in classification tasks performed on the Modified National Institute of Standards and Technology (MNIST) data set with an accuracy level of 94.65% (a single network) and 95.17% (a network committee)-comparable to the state-of-the-art results of single-layer SNN architectures trained in an unsupervised manner. Furthermore, the training process leads to sparse data representation and the developed RFs have the potential to serve as local feature detectors in multilayered spiking networks. We also prove theoretically that when applied to linear Poisson neurons, our rule conserves total synaptic strength, guaranteeing the convergence of the learning process.

摘要

尖峰时间依赖可塑性(STDP)是最流行和最深入的生物启发式非监督赫布型学习形式之一。在本文中,我们提出了一种 STDP 的变体,通过附加的激活相关比例因子进行扩展。由此产生的学习规则是一种高效的算法,简单易用,适用于尖峰神经网络(SNN)。研究表明,所提出的可塑性机制与竞争学习相结合,可以作为非监督式感受野(RF)发展的有效机制。此外,在 RF 成功发展的背景下,探索了突触缩放和侧向抑制之间的关系。具体来说,我们证明了保持高水平的突触缩放,然后迅速增加,对于选择性神经元机制的发展至关重要。在对 Modified National Institute of Standards and Technology (MNIST) 数据集进行分类任务的评估中,所提出的解决方案的强度表现出色,准确率达到 94.65%(单个网络)和 95.17%(网络委员会)-与以非监督方式训练的单层 SNN 架构的最新结果相当。此外,训练过程导致数据表示稀疏,并且开发的 RF 有可能作为多层尖峰网络中的局部特征检测器。我们还从理论上证明,当应用于线性泊松神经元时,我们的规则可以保持总突触强度,保证学习过程的收敛。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验