Suppr超能文献

急性后极部多发性斑状色素上皮病变的分类标准。

Classification Criteria for Acute Posterior Multifocal Placoid Pigment Epitheliopathy.

出版信息

Am J Ophthalmol. 2021 Aug;228:174-181. doi: 10.1016/j.ajo.2021.03.056. Epub 2021 Apr 9.

Abstract

PURPOSE

To determine classification criteria for acute posterior multifocal placoid pigment epitheliopathy (APMPPE).

DESIGN

Machine learning of cases with APMPPE and 8 other posterior uveitides.

METHODS

Cases of posterior uveitides were collected in an informatics-designed preliminary database, and a final database was constructed of cases achieving supermajority agreement on diagnosis, using formal consensus techniques. Cases were split into a training set and a validation set. Machine learning using multinomial logistic regression was used on the training set to determine a parsimonious set of criteria that minimized the misclassification rate among the posterior uveitides. The resulting criteria were evaluated on the validation set.

RESULTS

One thousand sixty-eight cases of posterior uveitides, including 82 cases of APMPPE, were evaluated by machine learning. Key criteria for APMPPE included (1) choroidal lesions with a plaque-like or placoid appearance and (2) characteristic imaging on fluorescein angiography (lesions "block early and stain late diffusely"). Overall accuracy for posterior uveitides was 92.7% in the training set and 98.0% (95% confidence interval 94.3, 99.3) in the validation set. The misclassification rates for APMPPE were 5% in the training set and 0% in the validation set.

CONCLUSIONS

The criteria for APMPPE had a low misclassification rate and seemed to perform sufficiently well for use in clinical and translational research.

摘要

目的

确定急性后极部多灶性斑状色素上皮病变(APMPPE)的分类标准。

设计

APMPPE 和其他 8 种后葡萄膜炎病例的机器学习。

方法

在后葡萄膜炎的信息学设计的初步数据库中收集病例,并使用正式共识技术对达成诊断多数共识的病例构建最终数据库。病例分为训练集和验证集。使用多项逻辑回归的机器学习在训练集上确定一组简洁的标准,这些标准最小化了后葡萄膜炎之间的分类错误率。在验证集上评估得出的标准。

结果

通过机器学习评估了 1068 例后葡萄膜炎病例,包括 82 例 APMPPE。APMPPE 的关键标准包括(1)脉络膜病变呈斑块样或斑片状外观,(2)荧光素血管造影的特征性成像(病变“早期阻塞,晚期弥漫性染色”)。训练集的总体准确率为 92.7%,验证集为 98.0%(95%置信区间 94.3,99.3)。训练集的误诊率为 5%,验证集为 0%。

结论

APMPPE 的标准误诊率较低,似乎足以用于临床和转化研究。

相似文献

2
Classification Criteria For Multiple Evanescent White Dot Syndrome.多发性一过性白点综合征的分类标准
Am J Ophthalmol. 2021 Aug;228:198-204. doi: 10.1016/j.ajo.2021.03.050. Epub 2021 Apr 15.
3
Classification Criteria for Serpiginous Choroiditis.匐行性脉络膜炎的分类标准。
Am J Ophthalmol. 2021 Aug;228:126-133. doi: 10.1016/j.ajo.2021.03.038. Epub 2021 Apr 15.
4
Classification Criteria for Birdshot Chorioretinitis.鸟枪弹样脉络膜视网膜炎的分类标准。
Am J Ophthalmol. 2021 Aug;228:65-71. doi: 10.1016/j.ajo.2021.03.059. Epub 2021 Apr 15.
5
Classification Criteria for Punctate Inner Choroiditis.点状内层脉络膜炎的分类标准。
Am J Ophthalmol. 2021 Aug;228:275-280. doi: 10.1016/j.ajo.2021.03.046. Epub 2021 Apr 15.
6
Classification Criteria for Acute Retinal Necrosis Syndrome.急性视网膜坏死综合征的分类标准。
Am J Ophthalmol. 2021 Aug;228:237-244. doi: 10.1016/j.ajo.2021.03.057. Epub 2021 Apr 15.
7
Classification Criteria for Multifocal Choroiditis With Panuveitis.多灶性脉络膜炎伴全葡萄膜炎的分类标准。
Am J Ophthalmol. 2021 Aug;228:152-158. doi: 10.1016/j.ajo.2021.03.043. Epub 2021 May 11.
8
Development of Classification Criteria for the Uveitides.葡萄膜炎分类标准的制定。
Am J Ophthalmol. 2021 Aug;228:96-105. doi: 10.1016/j.ajo.2021.03.061. Epub 2021 Apr 20.
9
Classification Criteria for Vogt-Koyanagi-Harada Disease.Vogt-Koyanagi-Harada 病的分类标准。
Am J Ophthalmol. 2021 Aug;228:205-211. doi: 10.1016/j.ajo.2021.03.036. Epub 2021 Apr 9.
10
Classification Criteria for Fuchs Uveitis Syndrome.Fuchs 葡萄膜炎综合征的分类标准。
Am J Ophthalmol. 2021 Aug;228:262-267. doi: 10.1016/j.ajo.2021.03.052. Epub 2021 May 11.

引用本文的文献

8
Development of Classification Criteria for the Uveitides.葡萄膜炎分类标准的制定。
Am J Ophthalmol. 2021 Aug;228:96-105. doi: 10.1016/j.ajo.2021.03.061. Epub 2021 Apr 20.

本文引用的文献

1
Reply to Comment on: Classification Criteria for Behçet Disease Uveitis.对《白塞病葡萄膜炎分类标准》评论的回复
Am J Ophthalmol. 2022 Mar;235:339-340. doi: 10.1016/j.ajo.2021.10.020. Epub 2021 Oct 27.
9
Distinctions between diagnostic and classification criteria?诊断标准和分类标准之间的区别?
Arthritis Care Res (Hoboken). 2015 Jul;67(7):891-7. doi: 10.1002/acr.22583.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验