Suppr超能文献

葡萄膜炎分类标准的制定。

Development of Classification Criteria for the Uveitides.

出版信息

Am J Ophthalmol. 2021 Aug;228:96-105. doi: 10.1016/j.ajo.2021.03.061. Epub 2021 Apr 20.

Abstract

PURPOSE

To develop classification criteria for 25 of the most common uveitides.

DESIGN

Machine learning using 5,766 cases of 25 uveitides.

METHODS

Cases were collected in an informatics-designed preliminary database. Using formal consensus techniques, a final database was constructed of 4,046 cases achieving supermajority agreement on the diagnosis. Cases were analyzed within uveitic class and were split into a training set and a validation set. Machine learning used multinomial logistic regression with lasso regularization on the training set to determine a parsimonious set of criteria for each disease and to minimize misclassification rates. The resulting criteria were evaluated in the validation set. Accuracy of the rules developed to express the machine learning criteria was evaluated by a masked observer in a 10% random sample of cases.

RESULTS

Overall accuracy estimates by uveitic class in the validation set were as follows: anterior uveitides 96.7% (95% confidence interval [CI] 92.4, 98.6); intermediate uveitides 99.3% (95% CI 96.1, 99.9); posterior uveitides 98.0% (95% CI 94.3, 99.3); panuveitides 94.0% (95% CI 89.0, 96.8); and infectious posterior uveitides / panuveitides 93.3% (95% CI 89.1, 96.3). Accuracies of the masked evaluation of the "rules" were anterior uveitides 96.5% (95% CI 91.4, 98.6) intermediate uveitides 98.4% (91.5, 99.7), posterior uveitides 99.2% (95% CI 95.4, 99.9), panuveitides 98.9% (95% CI 94.3, 99.8), and infectious posterior uveitides / panuveitides 98.8% (95% CI 93.4, 99.9).

CONCLUSIONS

The classification criteria for these 25 uveitides had high overall accuracy (ie, low misclassification rates) and seemed to perform well enough for use in clinical and translational research.

摘要

目的

为 25 种最常见的葡萄膜炎制定分类标准。

设计

使用 5766 例 25 种葡萄膜炎病例进行机器学习。

方法

病例在信息学设计的初步数据库中收集。使用正式共识技术,构建了一个包含 4046 例病例的最终数据库,这些病例对诊断达成了绝大多数的一致意见。病例在葡萄膜炎类别内进行分析,并分为训练集和验证集。在训练集上使用多项逻辑回归和套索正则化进行机器学习,为每种疾病确定一套简洁的标准,并将分类错误率最小化。在验证集中评估得到的标准。通过对 10%的病例进行盲法评估,评估观察者对表达机器学习标准的规则的准确性。

结果

验证集中,按葡萄膜炎类型的总体准确率估计如下:前葡萄膜炎 96.7%(95%置信区间[CI]92.4%,98.6%);中间葡萄膜炎 99.3%(95%CI96.1%,99.9%);后葡萄膜炎 98.0%(95%CI94.3%,99.3%);全葡萄膜炎 94.0%(95%CI89.0%,96.8%);感染性后葡萄膜炎/全葡萄膜炎 93.3%(95%CI89.1%,96.3%)。对“规则”进行盲法评估的准确率分别为:前葡萄膜炎 96.5%(95%CI91.4%,98.6%);中间葡萄膜炎 98.4%(91.5%,99.7%);后葡萄膜炎 99.2%(95%CI95.4%,99.9%);全葡萄膜炎 98.9%(95%CI94.3%,99.8%);感染性后葡萄膜炎/全葡萄膜炎 98.8%(95%CI93.4%,99.9%)。

结论

这些 25 种葡萄膜炎的分类标准具有较高的总体准确性(即较低的分类错误率),似乎足以用于临床和转化研究。

相似文献

1
Development of Classification Criteria for the Uveitides.葡萄膜炎分类标准的制定。
Am J Ophthalmol. 2021 Aug;228:96-105. doi: 10.1016/j.ajo.2021.03.061. Epub 2021 Apr 20.
2
Classification Criteria for Syphilitic Uveitis.梅毒性葡萄膜炎的分类标准。
Am J Ophthalmol. 2021 Aug;228:182-191. doi: 10.1016/j.ajo.2021.03.039. Epub 2021 May 11.
3
Classification Criteria for Acute Retinal Necrosis Syndrome.急性视网膜坏死综合征的分类标准。
Am J Ophthalmol. 2021 Aug;228:237-244. doi: 10.1016/j.ajo.2021.03.057. Epub 2021 Apr 15.
4
Classification Criteria for Sarcoidosis-Associated Uveitis.结节病相关性葡萄膜炎的分类标准。
Am J Ophthalmol. 2021 Aug;228:220-230. doi: 10.1016/j.ajo.2021.03.047. Epub 2021 May 11.
5
Classification Criteria For Multiple Evanescent White Dot Syndrome.多发性一过性白点综合征的分类标准
Am J Ophthalmol. 2021 Aug;228:198-204. doi: 10.1016/j.ajo.2021.03.050. Epub 2021 Apr 15.
6
Classification Criteria for Fuchs Uveitis Syndrome.Fuchs 葡萄膜炎综合征的分类标准。
Am J Ophthalmol. 2021 Aug;228:262-267. doi: 10.1016/j.ajo.2021.03.052. Epub 2021 May 11.
7
Classification Criteria for Birdshot Chorioretinitis.鸟枪弹样脉络膜视网膜炎的分类标准。
Am J Ophthalmol. 2021 Aug;228:65-71. doi: 10.1016/j.ajo.2021.03.059. Epub 2021 Apr 15.
8
Classification Criteria for Behçet Disease Uveitis.白塞病葡萄膜炎的分类标准。
Am J Ophthalmol. 2021 Aug;228:80-88. doi: 10.1016/j.ajo.2021.03.058. Epub 2021 May 11.
9
Classification Criteria for Tubercular Uveitis.结核性葡萄膜炎的分类标准。
Am J Ophthalmol. 2021 Aug;228:142-151. doi: 10.1016/j.ajo.2021.03.040. Epub 2021 May 11.

引用本文的文献

6
Neural networks for predicting etiological diagnosis of uveitis.用于预测葡萄膜炎病因诊断的神经网络。
Eye (Lond). 2025 Apr;39(5):992-1002. doi: 10.1038/s41433-024-03530-2. Epub 2024 Dec 20.
8
Immune Privilege Furnishes a Niche for Latent Infection.免疫赦免为潜伏感染提供了一个生态位。
Front Ophthalmol (Lausanne). 2022 Mar 8;2:869046. doi: 10.3389/fopht.2022.869046. eCollection 2022.

本文引用的文献

1
Reply to Comment on: Classification Criteria for Behçet Disease Uveitis.对《白塞病葡萄膜炎分类标准》评论的回复
Am J Ophthalmol. 2022 Mar;235:339-340. doi: 10.1016/j.ajo.2021.10.020. Epub 2021 Oct 27.
2
Classification Criteria For Multiple Evanescent White Dot Syndrome.多发性一过性白点综合征的分类标准
Am J Ophthalmol. 2021 Aug;228:198-204. doi: 10.1016/j.ajo.2021.03.050. Epub 2021 Apr 15.
6
Classification Criteria for Multifocal Choroiditis With Panuveitis.多灶性脉络膜炎伴全葡萄膜炎的分类标准。
Am J Ophthalmol. 2021 Aug;228:152-158. doi: 10.1016/j.ajo.2021.03.043. Epub 2021 May 11.
7
Classification Criteria for Punctate Inner Choroiditis.点状内层脉络膜炎的分类标准。
Am J Ophthalmol. 2021 Aug;228:275-280. doi: 10.1016/j.ajo.2021.03.046. Epub 2021 Apr 15.
10
Distinctions between diagnostic and classification criteria?诊断标准和分类标准之间的区别?
Arthritis Care Res (Hoboken). 2015 Jul;67(7):891-7. doi: 10.1002/acr.22583.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验