Am J Ophthalmol. 2021 Aug;228:262-267. doi: 10.1016/j.ajo.2021.03.052. Epub 2021 May 11.
To determine classification criteria for Fuchs' uveitis syndrome.
Machine learning of cases with Fuchs' uveitis syndrome and 8 other anterior uveitides.
Cases of anterior uveitides were collected in an informatics-designed preliminary database, and a final database was constructed of cases achieving supermajority agreement on the diagnosis, using formal consensus techniques. Cases were split into a training set and a validation set. Machine learning using multinomial logistic regression was used on the training set to determine a parsimonious set of criteria that minimized the misclassification rate among the anterior uveitides. The resulting criteria were evaluated on the validation set.
One thousand eighty-three cases of anterior uveitides, including 146 cases of Fuchs' uveitis syndrome, were evaluated by machine learning. The overall accuracy for anterior uveitides was 97.5% in the training set and 96.7% in the validation set (95% confidence interval 92.4, 98.6). Key criteria for Fuchs' uveitis syndrome included unilateral anterior uveitis with or without vitritis and either: 1) heterochromia or 2) unilateral diffuse iris atrophy and stellate keratic precipitates. The misclassification rates for Fuchs' uveitis syndrome were 4.7% in the training set and 5.5% in the validation set, respectively.
The criteria for Fuchs' uveitis syndrome had a low misclassification rate and appeared to perform well enough for use in clinical and translational research.
确定 Fuchs 葡萄膜炎综合征的分类标准。
采用机器学习方法对 Fuchs 葡萄膜炎综合征和其他 8 种前葡萄膜炎病例进行分析。
在信息学设计的初步数据库中收集前葡萄膜炎病例,并使用正式共识技术对达成诊断的大多数病例构建最终数据库。将病例分为训练集和验证集。在训练集上使用多项逻辑回归进行机器学习,以确定一组简化的标准,使前葡萄膜炎的分类错误率最小化。在验证集上评估所得标准。
通过机器学习评估了 1083 例前葡萄膜炎病例,包括 146 例 Fuchs 葡萄膜炎综合征病例。训练集和验证集的前葡萄膜炎总体准确率分别为 97.5%和 96.7%(95%置信区间 92.4,98.6)。Fuchs 葡萄膜炎综合征的关键标准包括单侧前葡萄膜炎伴或不伴虹膜炎和以下任意一项:1)虹膜异色;或 2)单侧弥漫性虹膜萎缩和星状角膜后沉着物。训练集和验证集的 Fuchs 葡萄膜炎综合征分类错误率分别为 4.7%和 5.5%。
Fuchs 葡萄膜炎综合征的分类标准错误率较低,似乎足以用于临床和转化研究。