Am J Ophthalmol. 2021 Aug;228:65-71. doi: 10.1016/j.ajo.2021.03.059. Epub 2021 Apr 15.
To determine classification criteria for birdshot chorioretinitis.
Machine learning of cases with birdshot chorioretinitis and 8 other posterior uveitides.
Cases of posterior uveitides were collected in an informatics-designed preliminary database, and a final database was constructed of cases achieving supermajority agreement on diagnosis, using formal consensus techniques. Cases were split into a training set and a validation set. Machine learning using multinomial logistic regression was used on the training set to determine a parsimonious set of criteria that minimized the misclassification rate among the infectious posterior uveitides / panuveitides. The resulting criteria were evaluated on the validation set.
One thousand sixty-eight cases of posterior uveitides, including 207 cases of birdshot chorioretinitis, were evaluated by machine learning. Key criteria for birdshot chorioretinitis included a multifocal choroiditis with (1) the characteristic appearance of a bilateral multifocal choroiditis with cream-colored or yellow-orange, oval or round choroidal spots ("birdshot" spots); (2) absent to mild anterior chamber inflammation; and (3) absent to moderate vitreous inflammation; or multifocal choroiditis with positive HLA-A29 testing and either classic "birdshot spots" or characteristic imaging on indocyanine green angiography. Overall accuracy for posterior uveitides was 93.9% in the training set and 98.0% (95% confidence interval 94.3, 99.3) in the validation set. The misclassification rates for birdshot chorioretinitis were 10% in the training set and 0% in the validation set.
The criteria for birdshot chorioretinitis had a low misclassification rate and seemed to perform sufficiently well for use in clinical and translational research.
确定鸟枪弹样脉络膜视网膜炎的分类标准。
鸟枪弹样脉络膜视网膜炎病例与其他 8 种后葡萄膜炎的机器学习。
在后葡萄膜炎信息学设计的初步数据库中收集病例,并使用正式共识技术对达成诊断多数共识的病例构建最终数据库。病例分为训练集和验证集。在训练集上使用多项逻辑回归的机器学习来确定一组简洁的标准,使传染性后葡萄膜炎/全葡萄膜炎的分类错误率最小化。在验证集上评估得出的标准。
使用机器学习评估了 1068 例后葡萄膜炎病例,包括 207 例鸟枪弹样脉络膜视网膜炎病例。鸟枪弹样脉络膜视网膜炎的关键标准包括:(1)多灶性脉络膜炎,具有双侧多灶性脉络膜炎的特征性外观,呈奶油色或黄橙色、椭圆形或圆形脉络膜斑(“鸟枪弹样”斑);(2)前房炎症轻微至无;(3)玻璃体炎症轻微至中度;或多灶性脉络膜炎伴 HLA-A29 检测阳性,并有典型的“鸟枪弹样”斑或吲哚菁绿血管造影的特征性成像。训练集中后葡萄膜炎的总体准确率为 93.9%,验证集中为 98.0%(95%置信区间 94.3,99.3)。训练集中鸟枪弹样脉络膜视网膜炎的分类错误率为 10%,验证集中为 0%。
鸟枪弹样脉络膜视网膜炎的标准分类错误率较低,似乎足以用于临床和转化研究。