Suppr超能文献

一种细胞到患者的机器学习转移方法揭示了替代剪接变异体中新型基底样乳腺癌预后标志物。

A cell-to-patient machine learning transfer approach uncovers novel basal-like breast cancer prognostic markers amongst alternative splice variants.

机构信息

Institut de Génétique Humaine (IGH-UMR9002), Centre National de la Recherche Scientifique (CNRS), University of Montpellier, Montpellier, France.

出版信息

BMC Biol. 2021 Apr 12;19(1):70. doi: 10.1186/s12915-021-01002-7.

Abstract

BACKGROUND

Breast cancer is amongst the 10 first causes of death in women worldwide. Around 20% of patients are misdiagnosed leading to early metastasis, resistance to treatment and relapse. Many clinical and gene expression profiles have been successfully used to classify breast tumours into 5 major types with different prognosis and sensitivity to specific treatments. Unfortunately, these profiles have failed to subclassify breast tumours into more subtypes to improve diagnostics and survival rate. Alternative splicing is emerging as a new source of highly specific biomarkers to classify tumours in different grades. Taking advantage of extensive public transcriptomics datasets in breast cancer cell lines (CCLE) and breast cancer tumours (TCGA), we have addressed the capacity of alternative splice variants to subclassify highly aggressive breast cancers.

RESULTS

Transcriptomics analysis of alternative splicing events between luminal, basal A and basal B breast cancer cell lines identified a unique splicing signature for a subtype of tumours, the basal B, whose classification is not in use in the clinic yet. Basal B cell lines, in contrast with luminal and basal A, are highly metastatic and express epithelial-to-mesenchymal (EMT) markers, which are hallmarks of cell invasion and resistance to drugs. By developing a semi-supervised machine learning approach, we transferred the molecular knowledge gained from these cell lines into patients to subclassify basal-like triple negative tumours into basal A- and basal B-like categories. Changes in splicing of 25 alternative exons, intimately related to EMT and cell invasion such as ENAH, CD44 and CTNND1, were sufficient to identify the basal-like patients with the worst prognosis. Moreover, patients expressing this basal B-specific splicing signature also expressed newly identified biomarkers of metastasis-initiating cells, like CD36, supporting a more invasive phenotype for this basal B-like breast cancer subtype.

CONCLUSIONS

Using a novel machine learning approach, we have identified an EMT-related splicing signature capable of subclassifying the most aggressive type of breast cancer, which are basal-like triple negative tumours. This proof-of-concept demonstrates that the biological knowledge acquired from cell lines can be transferred to patients data for further clinical investigation. More studies, particularly in 3D culture and organoids, will increase the accuracy of this transfer of knowledge, which will open new perspectives into the development of novel therapeutic strategies and the further identification of specific biomarkers for drug resistance and cancer relapse.

摘要

背景

乳腺癌是全球女性死亡的十大原因之一。约 20%的患者被误诊,导致早期转移、治疗耐药和复发。许多临床和基因表达谱已成功用于将乳腺癌分为 5 种主要类型,这些类型具有不同的预后和对特定治疗的敏感性。不幸的是,这些谱未能将乳腺癌进一步细分为更多亚型,以提高诊断和生存率。选择性剪接正在成为一种新的高度特异性生物标志物来源,用于对不同分级的肿瘤进行分类。利用乳腺癌细胞系(CCLE)和乳腺癌肿瘤(TCGA)的广泛公共转录组数据集,我们研究了选择性剪接变体在高度侵袭性乳腺癌中的细分能力。

结果

对 luminal、basal A 和 basal B 乳腺癌细胞系之间的选择性剪接事件进行转录组学分析,确定了一种独特的剪接特征,用于一种肿瘤亚型,即 basal B,目前临床上尚未使用这种分类。与 luminal 和 basal A 相比,basal B 细胞系具有高度转移性,并表达上皮-间充质(EMT)标志物,这是细胞侵袭和耐药的标志。通过开发一种半监督机器学习方法,我们将从这些细胞系中获得的分子知识转移到患者中,将基底样三阴性肿瘤细分为 basal A 和 basal B 样类别。25 个与 EMT 和细胞侵袭密切相关的选择性外显子的剪接变化,如 ENAH、CD44 和 CTNND1,足以识别预后最差的基底样患者。此外,表达这种 basal B 特异性剪接特征的患者还表达了新发现的转移起始细胞的生物标志物,如 CD36,支持这种 basal B 样乳腺癌亚型具有更具侵袭性的表型。

结论

使用一种新的机器学习方法,我们确定了一个 EMT 相关的剪接特征,能够对最具侵袭性的乳腺癌类型进行细分,即基底样三阴性肿瘤。这一概念验证表明,从细胞系获得的生物学知识可以转移到患者数据中进行进一步的临床研究。更多的研究,特别是在 3D 培养和类器官中,将提高这种知识转移的准确性,为新的治疗策略的发展和耐药性和癌症复发的特定生物标志物的进一步鉴定开辟新的前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d19b/8042689/0ed5aeabab73/12915_2021_1002_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验