Suppr超能文献

基于低级别胶质瘤患者 MRI 影像组学分析,建立染色体 1p/19q 共缺失的无创分子状态预测模型并进行外部验证。

Development and external validation of a non-invasive molecular status predictor of chromosome 1p/19q co-deletion based on MRI radiomics analysis of Low Grade Glioma patients.

机构信息

The D-Lab, Department of Precision Medicine, GROW- School for Oncology, Maastricht University Maastricht, the Netherlands.

The D-Lab, Department of Precision Medicine, GROW- School for Oncology, Maastricht University Maastricht, the Netherlands.

出版信息

Eur J Radiol. 2021 Jun;139:109678. doi: 10.1016/j.ejrad.2021.109678. Epub 2021 Apr 5.

Abstract

PURPOSE

The 1p/19q co-deletion status has been demonstrated to be a prognostic biomarker in lower grade glioma (LGG). The objective of this study was to build a magnetic resonance (MRI)-derived radiomics model to predict the 1p/19q co-deletion status.

METHOD

209 pathology-confirmed LGG patients from 2 different datasets from The Cancer Imaging Archive were retrospectively reviewed; one dataset with 159 patients as the training and discovery dataset and the other one with 50 patients as validation dataset. Radiomics features were extracted from T2- and T1-weighted post-contrast MRI resampled data using linear and cubic interpolation methods. For each of the voxel resampling methods a three-step approach was used for feature selection and a random forest (RF) classifier was trained on the training dataset. Model performance was evaluated on training and validation datasets and clinical utility indexes (CUIs) were computed. The distributions and intercorrelation for selected features were analyzed.

RESULTS

Seven radiomics features were selected from the cubic interpolated features and five from the linear interpolated features on the training dataset. The RF classifier showed similar performance for cubic and linear interpolation methods in the training dataset with accuracies of 0.81 (0.75-0.86) and 0.76 (0.71-0.82) respectively; in the validation dataset the accuracy dropped to 0.72 (0.6-0.82) using cubic interpolation and 0.72 (0.6-0.84) using linear resampling. CUIs showed the model achieved satisfactory negative values (0.605 using cubic interpolation and 0.569 for linear interpolation).

CONCLUSIONS

MRI has the potential for predicting the 1p/19q status in LGGs. Both cubic and linear interpolation methods showed similar performance in external validation.

摘要

目的

1p/19q 共缺失状态已被证明是低级别胶质瘤(LGG)的预后生物标志物。本研究的目的是建立一个基于磁共振成像(MRI)的放射组学模型来预测 1p/19q 共缺失状态。

方法

回顾性分析了来自癌症成像档案(The Cancer Imaging Archive)的 2 个不同数据集的 209 例经病理证实的 LGG 患者;一个数据集包含 159 例患者作为训练和发现数据集,另一个数据集包含 50 例患者作为验证数据集。使用线性和立方插值方法从 T2 和 T1 加权对比后 MRI 重采样数据中提取放射组学特征。对于每种体素重采样方法,使用三步特征选择方法和随机森林(RF)分类器在训练数据集上进行训练。在训练和验证数据集上评估模型性能,并计算临床效用指标(CUIs)。分析了所选特征的分布和相互关系。

结果

在训练数据集上,从立方插值特征中选择了 7 个放射组学特征,从线性插值特征中选择了 5 个特征。RF 分类器在训练数据集中对立方和线性插值方法表现出相似的性能,准确率分别为 0.81(0.75-0.86)和 0.76(0.71-0.82);在验证数据集中,使用立方插值的准确率下降到 0.72(0.6-0.82),使用线性重采样的准确率为 0.72(0.6-0.84)。CUIs 显示该模型获得了令人满意的负值(使用立方插值为 0.605,使用线性插值为 0.569)。

结论

MRI 有可能预测 LGG 中的 1p/19q 状态。立方和线性插值方法在外部验证中表现出相似的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验